
Proceedings of the

12th International Workshop on Confluence

August 23-24, 2023

Obergurgl, Austria

Foreword

The 12th International Workshop on Confluence (IWC 2023) is held on August 23 and 24, 2023, in
Obergurgl, Austria, co-located with the 19th International Workshop on Termination (WST 2023).

Confluence, as a general notion of determinism, is an essential property of rewrite systems and has
emerged as a crucial concept for many applications. However, the confluence property is also relevant
to various further areas of rewriting, such as completion, commutation, termination, modularity, and
complexity. The International Workshop on Confluence was created as a forum to discuss all these
aspects, as well as related topics, implementation issues, and new applications.
IWC 2023 continues this tradition. The present report comprises ten regular submissions and the

abstracts of two invited talks, as well as descriptions of tools participating in the 12th Confluence
Competition (CoCo 2023).
The contributions in these proceedings reflect the wide scope of current research on confluence, ranging

from new confluence criteria and novel confluence-related properties over formalization of confluence
results to implementation aspects and applications. At the same time, the spectrum of rewrite formalisms
(first- as well as higher-order, conditional rewriting, rewriting under strategies) used to model problems
from different application areas underlines the importance of confluence for various domains.
The renewed interest in confluence research in the last decade resulted in a variety of novel approaches,

which were also implemented in powerful tools that compete in the annual confluence competition. The
second part of this report devoted to CoCo 2023 provides a general overview as well as system descriptions
of all competition entrants.

IWC 2023 was made possible by the commitment of many people who contributed to the submissions,
the preparation and the program of the workshop, as well as the confluence competition. These include
authors of papers and tools, committee members, and the organizers of CoCo, as well as the local
organizers. Their hard work is very much appreciated.

Cyrille Chenavier and Sarah Winkler Limoges and Bolzano, 28 July 2023

ii

Organization

IWC Steering Committee

� Takahito Aoto, Niigata University, Japan

� Mauricio Ayala-Rincón, Brasilia University, Brasil

IWC Program Committee

� Patrick Bahr, IT University of Copenhagen, Denmark

� Cyrille Chenavier, Université de Limoges, France (co-chair)

� Benjamin Dupont, Université Grenoble Alpes, France

� Jörg Endrullis, Vrije Universiteit Amsterdam, Netherlands

� Claudia Faggian, Université de Paris, France

� Carsten Fuhs, Birkbeck University of London, Great Britain

� Raúl Gutiérrez, Universidad Politécnica de Madrid, Spain

� Dohan Kim, University of Innsbruck, Austria

� Sarah Winkler, Free University of Bozen-Bolzano, Italy (co-chair)

Additional Reviewers

� Aart Middeldorp, University of Innsbruck, Austria

CoCo Steering Committee

� Raúl Gutiérrez, Universidad Politécnica de Madrid, Spain

� Aart Middeldorp, University of Innsbruck, Austria

� Naoki Nishida, Nagoya University, Japan

� Kiraku Shintani, JAIST, Japan

iii

Contents

Foreword ii

Organization iii

Abstracts of Invited Talks 1
Unravelings and Narrowing Trees Towards Confluence of Deterministic CTRSs

Naoki Nishida . 1
History and Future of the CeTA-Certifier for CoCo - Including a New Decision Procedure

for Pattern Completeness
René Thiemann . 2

Workshop Contributions 3
Reducing Confluence of LCTRSs to Confluence of TRSs

Fabian Mitterwallner, Jonas Schöpf and Aart Middeldorp 3
On Confluence Criteria for Non-terminating Abstract Rewriting Systems

Ievgen Ivanov . 9
Church–Rosser Modulo for Left-Linear TRSs Revisited

Johannes Niederhauser, Nao Hirokawa and Aart Middeldorp 14
Residuation = Skolemised Confluence

Vincent van Oostrom . 20
Confluence of a Computational Lambda Calculus for Higher-Order Relational Queries

Claudio Sacerdoti Coen and Riccardo Treglia . 26
A New Format for Rewrite Systems

Takahito Aoto, Nao Hirokawa, Dohan Kim, Misaki Kojima, Aart Middeldorp, Fabian
Mitterwallner, Naoki Nishida, Teppei Saito, Jonas Schöpf, Kiraku Shintani, René
Thiemann and Akihisa Yamada . 32

The Z-property for left-linear term rewriting via convective context-sensitive completeness
Vincent van Oostrom . 38

Ground Canonical Rewrite Systems Revisited
Aart Middeldorp, Masahiko Sakai and Sarah Winkler 44

Formalizing Confluence and Commutation Criteria Using Proof Terms
Christina Kohl and Aart Middeldorp . 49

A verified algorithm for deciding pattern completeness and related properties
René Thiemann . 55

Confluence Competition 61
Confluence Competition 2023

Raúl Gutiérrez, Aart Middeldorp, Naoki Nishida, Kiraku Shintani 61
ConfCSR

Filip Stevanovic and Fabian Mitterwallner . 63
Toma 0.5: An Equational Theorem Prover

Teppei Saito and Nao Hirokawa . 64
Hakusan 0.8: A Confluence Tool

Kiraku Shintani and Nao Hirokawa . 65
CoLL 1.6.1: A Commutation Tool

Kiraku Shintani . 66
CO3 (Version 2.4)

Naoki Nishida, Misaki Kojima, and Ayuka Matsumi 67
CSI 1.2.7

Fabian Mitterwallner and Aart Middeldorp . 68
FORT-h 2.0

Fabian Mitterwallner, Aart Middeldorp . 69
FORTify 2.0

Alexander Lochmann, Fabian Mitterwallner, Aart Middeldorp 70
CONFident

Miguel Vı́tores, Raúl Gutiérrez, and Salvador Lucas 71

iv

infChecker
Raúl Gutiérrez, Salvador Lucas, Miguel Vı́tores . 72

AGCP
Takahito Aoto . 73

ACP
Takahito Aoto . 74

nonreach 1.2
Florian Meßner . 75

CeTA 2.45
René Thiemann, Christina Kohl, and Aart Middeldorp 76

v

Unravelings and Narrowing Trees Towards Confluence of

Deterministic CTRSs

Naoki Nishida

Nagoya University, Japan
naoki.nishida@nagoya-u.jp

In this talk, we present two main techniques developed in CO3, a COnverter for proving
COnfluence of COnditional term rewrite systems, for proving confluence and infeasibility prob-
lems of deterministic conditional term rewrite systems (DCTRSs, for short). One is unraveling
transformations: An unraveling is a reduction-preserving transformation of a join or oriented
CTRS into a term rewrite system (TRS, for short); for a syntactically deterministic CTRS, if
the unraveled TRS of the CTRS is weakly left-linear and confluent, then the CTRS is confluent.
The other is narrowing trees: A narrowing tree of finitely many oriented conditions represent
the set of substitutions satisfying all the conditions w.r.t. constructor-based rewriting; for a
conditional critical pair of a DCTRS, if the unraveled TRS of the DCTRS is right-linear and
a narrowing tree of the conditional part represents the empty set, then the conditional critical
pair is infeasible.

1

History and Future of the CeTA-Certifier for CoCo -

Including a New Decision Procedure for Pattern

Completeness

René Thiemann

University of Innsbruck, Austria
rene.thiemann@uibk.ac.at

This talk is split into two parts. In the first part we will provide some history of CeTA,
the certifier that is used to validate the generated proofs of the annual confluence competition
CoCo. In the second part we present some future plans of CeTA. Here, we present some initial
steps that have been done to support ground confluence proofs. For instance, we developed a
new and simple algorithm to decide pattern completeness for first-order TRSs. This property
implies quasi-reducibility, a prerequisite if one wants to prove ground confluence by rewriting
induction.

2

Reducing Confluence of LCTRSs to Confluence of TRSs∗

Fabian Mitterwallner, Jonas Schöpf, and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Innsbruck, Austria
{fabian.mitterwallner,jonas.schoepf,aart.middeldorp}@uibk.ac.at

Abstract

We present a transformation from logically constrained term rewrite systems (LCTRSs)
to plain term rewrite systems (TRSs) such that critical pairs of the latter correspond to
constrained critical pairs of the former. This allows us to transfer confluence results for
TRSs based on critical pair conditions to LCTRSs.

1 Introduction
Numerous techniques exist to (dis)prove confluence of plain TRSs. For LCTRSs much less is
known. Kop and Nishida [1] established (weak) orthogonality as sufficient confluence criteria for
LCTRSs. Joinability of critical pairs for terminating systems is implicit in [4]. Very recently,
strong closedness for linear LCTRSs and (almost) parallel closedness for left-linear LCTRSs
were established [2]. The proofs of these results were obtained by replaying existing proofs for
TRSs in a constrained setting, involving a non-trivial effort. For more advanced confluence
criteria, this is not feasible.

In this paper we present a simple transformation from LCTRSs to TRSs which allows us
to relate results for the latter to the former. This transformation is presented in the next
section and used in Section 3 to prove that (almost) development closed left-linear LCTRSs are
confluent by reusing the corresponding result for TRSs obtained by van Oostrom [3].

We assume familiarity with the basic notions of term rewriting. In the remainder of this
introductory section we recall a few key notions for LCTRSs. For more background information
we refer to [1, 2, 4]. We assume a many-sorted signature F = Fte∪Fth. For every sort ι in Fth we
have a non-empty set Valι ⊆ Fth of value symbols, such that all c ∈ Valι are constants of sort ι.
We demand Fte∩Fth ⊆ Val where Val = ⋃

ι Valι. In the case of integers this results in an infinite
signature with Z ⊆ Val ⊆ Fth. A term in T (Fth,V) is called a logical term. Ground logical
terms are mapped to values by an interpretation J : [[f(t1, . . . , tn)]] = fJ ([[t1]], . . . , [[tn]]). Logical
terms of sort bool are called constraints. A constraint φ is valid if [[φγ]] = ⊤ for all substitutions
γ such that γ(x) ∈ Val for all x ∈ Var(φ). A constrained rewrite rule is a triple ℓ→ r [φ] where
ℓ, r ∈ T (F ,V) are terms of the same sort such that root(ℓ) ∈ Fte \Fth and φ is a constraint. We
denote the set Var(φ) ∪ (Var(r) \ Var(ℓ)) of logical variables in ℓ → r [φ] by LVar(ℓ → r [φ]).
We write EVar(ℓ → r [φ]) for the set Var(r) \ (Var(ℓ) ∪ Var(φ)). A set of constrained rewrite
rules is called an LCTRS. A substitution σ is said to respect a rule ℓ → r [φ], denoted by
σ ⊨ ℓ → r [φ], if Dom(σ) = Var(ℓ) ∪ Var(r) ∪ Var(φ), σ(x) ∈ Val for all x ∈ LVar(ℓ → r [φ]),
and φσ is valid. Moreover, a constraint φ is respected by σ, denoted by σ ⊨ φ, if σ(x) ∈ Val
for all x ∈ Var(φ) and φσ is valid. We call f(x1, . . . , xn) → y [y = f(x1, . . . , xn)] with a fresh
variable y and f ∈ Fth \ Val a calculation rule. The set of all calculation rules induced by the
signature Fth of an LCTRS R is denoted by Rca and we abbreviate R∪Rca to Rrc. A rewrite
step s →R t satisfies s|p = ℓσ and t = s[rσ]p for some position p, constrained rewrite rule
ℓ→ r [φ] in Rrc, and substitution σ such that σ ⊨ ℓ→ r [φ].

∗This research is funded by the Austrian Science Fund (FWF) project I5943.

3

Reducing Confluence of LCTRSs to Confluence of TRSs Mitterwallner, Schöpf, Middeldorp

A constrained term is a pair s [φ] consisting of a term s and a constraint φ. Two constrained
terms s [φ] and t [ψ] are equivalent, denoted by s [φ] ∼ t [ψ], if for every substitution γ
respecting φ there is some substitution δ respecting ψ such that sγ = tδ, and vice versa. Let
s [φ] be a constrained term. If s|p = ℓσ for some constrained rewrite rule ρ : ℓ→ r [ψ] ∈ Rrc,
position p, and substitution σ such that σ(x) ∈ Val∪Var(φ) for all x ∈ LVar(ρ), φ is satisfiable
and φ⇒ ψσ is valid then s [φ]→R s[rσ]p [φ]. The rewrite relation ∼→R on constrained terms
is defined as ∼ · →R · ∼ and s [φ] ∼→p t [ψ] indicates that the rewrite step in ∼→R takes place
at position p. Similarly, we write s [φ] ∼→⩾p t [ψ] if the position in the rewrite step is below
position p. Note that in our definition of →R the constraint is not modified. This is different
from [1, 2] where calculation steps s[f(v1, . . . , vn)]p [φ]→ s[v]p [φ ∧ v = f(v1, . . . , vn)] modify
the constraint. Our relation ∼→ is equivalent to the relation ∼ · (→ru ∪ →ca) · ∼ in [1, 2] since
the constraint can be expanded as exemplified below.

Example 1. Consider the constrained term x+1 [x > 3]. Calculation steps as defined in [1, 2]
permit x + 1 [x > 3] → z [z = x + 1 ∧ x > 3]. In our setting, an initial equivalence step is
required to introduce the fresh variable z and the corresponding assignment needed to perform
a calculation: x+ 1 [x > 3] ∼ x+ 1 [z = x+ 1 ∧ x > 3]→ z [z = x+ 1 ∧ x > 3].

Our treatment allows for a much simpler definition of parallel and multi-step rewriting since
we do not have to merge different constraints.

2 Transformation

Our transformation is defined below.

Definition 2. Given an LCTRS R, the TRS R consists of the following rules: (1) ℓτ → rτ for
all ρ : ℓ→ r [φ] ∈ R with τ ⊨ ρ and Dom(τ) = LVar(ρ), and (2) f(v1, . . . , vn)→ [[f(v1, . . . , vn)]]
for all f ∈ Fth \ Val and v1, . . . , vn ∈ Val.

Note that R typically consists of infinitely many rules.

Lemma 3. The rewrite relations of R and R are the same. Moreover p−→R =
p−→R for all

positions p.

Proof. We first show p−→R ⊆ p−→R. Assume s p−→R t. So either s = s[f(v1, . . . , vn)]p → s[v]p = t
for some f ∈ Fth\Val and v = [[f(v1, . . . , vn)]] or s = s[ℓσ]p → s[rσ]p = t for some ρ : ℓ→ r [φ] ∈
R and σ ⊨ ρ. In the first case s p−→R t by the definition of R. In the second case we split σ into
two substitutions τ = {x 7→ σ(x) | x ∈ LVar(ρ)} and δ = {x 7→ σ(x) | x ∈ Var(ℓ) \ LVar(ρ)}.
From σ ⊨ ρ we infer τ ⊨ ρ and thus τ(x) ∈ Val for all x ∈ LVar(ρ). Hence σ = τ ∪ δ = τδ. We
have ℓτ → rτ ∈ R. Hence s = s[ℓτδ]p

p−→R s[rτδ]p = t as desired. To show the reverse inclusion
p−→R ⊆ p−→R we assume s p−→R t. When the applied rule stems from a calculation rule in R, we

trivially have s p−→R t. Otherwise s = s[ℓτδ]p
p−→R s[rτδ]p for some rule ρ : ℓ→ r [φ] ∈ R with

τ ⊨ ρ. Let σ = τδ. Since τ(x) ∈ Val for all x ∈ LVar(ρ), we have xσ = xτ for all x ∈ LVar(ρ).
Hence σ ⊨ ρ and thus s = s[ℓσ]p

p−→R s[rσ]p = t.

Since →R and →R coincide, we drop the subscript in the sequel. Rules of type (2) in
Definition 2 can be viewed as type (1) for the rule f(x1, . . . , xn) → y [y = f(x1, . . . , xn)] in
Rca by taking τ = {x1 7→ v1, . . . , xn 7→ vn, y 7→ [[f(v1, . . . , vn)]]}. Hence we do not distinguish
between the two cases and consider only rules of type (1) with ρ ∈ Rrc.

4

Reducing Confluence of LCTRSs to Confluence of TRSs Mitterwallner, Schöpf, Middeldorp

Definition 4. An overlap of an LCTRS R is a triple ⟨ρ1, p, ρ2⟩ with rules ρ1 : ℓ1 → r1 [φ1]
and ρ2 : ℓ2 → r2 [φ2], satisfying the following conditions: (1) ρ1 and ρ2 are variable-disjoint
variants of rewrite rules in Rrc, (2) p ∈ PosF (ℓ2), (3) ℓ1 and ℓ2|p unify with mgu σ such
that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1) ∪ LVar(ρ2), (4) φ1σ ∧ φ2σ is satisfiable, and (5) if
p = ϵ then ρ1 and ρ2 are not variants, or Var(r1) ⊈ Var(ℓ1). In this case we call ℓ2σ[r1σ]p ≈
r2σ [φ1σ ∧ φ2σ ∧ ψσ] a constrained critical pair obtained from the overlap ⟨ρ1, p, ρ2⟩. Here
ψ =

∧{x = x | x ∈ EVar(ρ1) ∪ EVar(ρ2)}. The set of all constrained critical pairs of R is
denoted by CCP(R).

A key ingredient of our approach is to relate critical pairs of the transformed TRS to
constrained critical pairs of the originating LCTRS.

Theorem 5. For every critical pair s ≈ t of R there exists a constrained critical pair s′ ≈ t′ [φ′]
of R and a substitution γ such that s = s′γ, t = t′γ and γ ⊨ φ′.

Proof. Let s ≈ t be a critical pair ofR, originating from the critical peak ℓ2µσ[r1νσ]p ← ℓ2µσ =
ℓ2µσ[ℓ1νσ]p → r2µσ with variants ρ1 : ℓ1 → r1 [φ1] and ρ2 : ℓ2 → r2 [φ2] of rules in Rrc without
shared variables, Dom(ν) = LVar(ρ1), Dom(µ) = LVar(ρ2), ν ⊨ ρ1, µ ⊨ ρ2, p ∈ PosF (ℓ2µ),
and σ is an mgu of ℓ2µ|p and ℓ1ν. Moreover, if p = ϵ then ℓ1ν → r1ν and ℓ2µ → r2µ are not
variants. Define τ = ν ⊎ µ. Clearly, ℓ1τ = ℓ1ν, r1τ = r1ν, ℓ2τ = ℓ2µ, r2τ = r2µ, τ ⊨ ρ1 and
τ ⊨ ρ2. Hence the given peak can be written as ℓ2τσ[r1τσ]p ← ℓ2τσ = ℓ2τσ[ℓ1τσ]p → r2τσ and
τ ⊨ φ where φ = φ1 ∧ φ2 ∧

∧{x = x | x ∈ EVar(ρ1)∪EVar(ρ2)}. Since ℓ2|pτσ = ℓ1τσ there
exists an mgu δ of ℓ2|p and ℓ1, and a substitution γ such that δγ = τσ. Let s′ = ℓ2δ[r1δ]p and
t′ = r2δ. We claim that ⟨ρ1, p, ρ2⟩ is an overlap of R, resulting in the constrained critical pair
s′ ≈ t′ [φδ]. Condition (1) of Definition 4 is trivially satisfied. For condition (2) we need to
show p ∈ PosF (ℓ2). This follows from p ∈ PosF (ℓ2µ), µ(x) ∈ Val for every x ∈ Dom(µ), and
root(ℓ2µ|p) = root(ℓ1ν) ∈ F \ Val. For condition (3) it remains to show that δ(x) ∈ Val ∪ V
for all x ∈ LVar(ρ1) ∪ LVar(ρ2). Suppose to the contrary that root(δ(x)) ∈ F \ Val for some
x ∈ LVar(ρ1)∪LVar(ρ2). Then root(δ(x)) = root(γ(δ(x))) = root(σ(τ(x))) ∈ F \ Val, which
contradicts τ ⊨ φ. Condition 4 follows from the identity δγ = τσ together with τ ⊨ φ which
imply δγ ⊨ φ and thus φδ is satisfiable. Hence also φ1δ ∧ φ2δ is satisfiable. It remains to show
condition 5, so let p = ϵ and further assume that ρ1 and ρ2 are variants. So there exists a
variable renaming π such that ρ1π = ρ2. In particular, ℓ1π = ℓ2 and r1π = r2. Let x ∈ Var(ℓ1).
If x ∈ LVar(ρ1) = Dom(ν) then τ(x) = ν(x) ∈ Val. Moreover, π(x) ∈ LVar(ρ2) = Dom(µ) and
thus τ(π(x)) = µ(π(x)) ∈ Val. Since ℓ1τ and ℓ2τ are unifiable, π(τ(x)) = τ(x) = τ(π(x)). If
x /∈ LVar(ρ1) then τ(x) = x, π(x) /∈ LVar(ρ2) and similarly τ(π(x)) = π(x) = π(τ(x)). All
in all, ℓ1τπ = ℓ1πτ = ℓ2τ . Now, if Var(r1) ⊆ Var(ℓ1) then we obtain r1τπ = r1πτ = r2τ ,
contradicting the fact that ℓ1ν → r1ν and ℓ2µ → r2µ are not variants. We conclude that
s′ ≈ t′ [φδ] is a constrained critical pair of R. So we can take φ′ = φδ. Clearly, s = s′γ and
t = t′γ. Moreover, γ ⊨ φ′ since φ′γ = φτσ = φτ and τ ⊨ φ.

The converse does not hold in general.

Example 6. Consider the LCTRS R consisting of the single rule a → x [x = 0] where the
variable x ranges over the integers. Since x appears on the right-hand side but not the left,
we obtain a constrained critical pair x ≈ x′ [x = 0 ∧ x′ = 0]. Since the constraint uniquely
determines the values of x and x′, the TRS R consists of the single rule a → 0. Obviously R
has no critical pairs.

The above example also shows that orthogonality of R does not imply orthogonality of R.
However, the counterexample relies somewhat on a technicality in condition (5) of Definition 4.

5

Reducing Confluence of LCTRSs to Confluence of TRSs Mitterwallner, Schöpf, Middeldorp

It only occurs when the two rules ℓ1 → r1 [φ1] and ℓ2 → r2 [φ2] involved in the critical pair
overlap at the root and have instances ℓ1τ1 → r1τ1 and ℓ2τ2 → r2τ2 in R which are variants of
each other. By dealing with such cases separately we can prove the following theorem.

Theorem 7. For every constrained critical pair s ≈ t [φ] of R and every substitution σ with
σ ⊨ φ, (1) sσ = tσ or (2) there exist a critical pair u ≈ v of R and a substitution δ such that
sσ = uδ and tσ = vδ.

Proof. Let s ≈ t [φ] be a constrained critical pair of R originating from the critical peak
s = ℓ2θ[r1θ]p ← ℓ2θ[ℓ1θ]p → r2θ = t with variants ρ1 : ℓ1 → r1 [φ1] and ρ2 : ℓ2 → r2 [φ2] of
rules in Rrc, and an mgu θ of ℓ2|p and ℓ1 where p ∈ PosF (ℓ2). Moreover θ(x) ∈ Val ∪ V for all
x ∈ LVar(ρ1)∪LVar(ρ2), and φ = φ1θ∧φ2θ∧ψθ with ψ =

∧{x = x | x ∈ EVar(ρ1)∪EVar(ρ2)}.
Let σ be a substitution with σ ⊨ φ. Hence θσ ⊨ φ1 ∧ φ2 ∧ ψ and further σ(θ(x)) ∈ Val for all
x ∈ LVar(ρ1) ∪ LVar(ρ2). We split θσ into substitutions τ1, τ2 and π as follows:

τi(x) =

{
xθσ if x ∈ LVar(ρi)
x otherwise

π(x) =

{
xθσ if x ∈ Dom(θσ) \ (LVar(ρ1) ∪ LVar(ρ2))
x otherwise

for i ∈ {1, 2}. From θσ ⊨ φ1 ∧ φ2 ∧ ψ and Var(φi) ⊆ LVar(ρi) we infer τi ⊨ φi for i ∈ {1, 2}.
Since Dom(τi) = LVar(ρi), ℓiτi → riτi ∈ R for i ∈ {1, 2}. Furthermore, τiπ = τi ∪ π for
i ∈ {1, 2}. Hence ℓ2|pτ2π = ℓ2|pθσ = ℓ1θσ = ℓ1τ1π, implying that ℓ2|pτ2 and ℓ1τ1 are unifiable.
Let γ be an mgu of these two terms. There exists a substitution δ such that γδ = π. Clearly
p ∈ PosF (ℓ2τ2). If p ̸= ϵ or ℓ1τ1 → r1τ1 and ℓ2τ2 → r2τ2 are not variants, then u ≈ v with u =
ℓ2τ2γ[r1τ1γ]p and v = r2τ2γ is a critical pair of R. Moreover tσ = r2θσ = r2τ2π = r2τ2γδ = vδ,
and similarly sσ = uδ. Thus option (2) is satisfied. If p = ϵ and ℓ1τ1 → r1τ1 and ℓ2τ2 → r2τ2
are variants then sσ = r1τ1γδ = r2τ2γδ = tσ, fulfilling (1).

A direct consequence is that weak orthogonality of R implies weak orthogonality of R.

3 Confluence
Using Theorem 5 we can easily transfer confluence criteria for TRSs to LCTRSs. Rather than
reproving the confluence results reported in [1, 4, 2], we illustrate this by extending the result of
van Oostrom [3] concerning (almost) development closed critical pairs from TRSs to LCTRSs.
The following result from [4] plays an important role.

Lemma 8. Suppose s ≈ t [φ] ∼→p u ≈ v [ψ] with γ ⊨ φ and position p. If p ⩾ 1 then sγ → uδ
and tγ = vδ for some substitution δ with δ ⊨ ψ. If p ⩾ 2 then sγ = uδ and tγ → vδ for some
substitution δ with δ ⊨ ψ.

Definition 9. Let R be an LCTRS. The multi-step relation ◦−→ on terms is defined inductively
as follows: (1) x ◦−→ x for all variables x, (2) f(s1, . . . , sn) ◦−→ f(t1, . . . , tn) if si ◦−→ ti with
1 ⩽ i ⩽ n, (3) ℓσ ◦−→ rτ if ℓ → r [φ] ∈ Rrc, σ ⊨ ℓ → r [φ] and σ ◦−→ τ , where σ ◦→ τ denotes
σ(x) ◦−→ τ(x) for all variables x ∈ Dom(σ).

The next definition inductively defines multi-step rewriting on constrained terms.

Definition 10. Let R be an LCTRS. The multi-step relation ◦−→ on constrained terms is
defined inductively as follows:

1. x [φ] ◦−→ x [φ] for all variables x,

6

Reducing Confluence of LCTRSs to Confluence of TRSs Mitterwallner, Schöpf, Middeldorp

2. f(s1, . . . , sn) [φ] ◦−→ f(t1, . . . , tn) [φ] if si [φ] ◦−→ ti [φ] for 1 ⩽ i ⩽ n,

3. ℓσ [φ] ◦−→ rτ [φ] if ρ : ℓ → r [ψ] ∈ Rrc, σ(x) ∈ Val ∪ Var(φ) for all x ∈ LVar(ρ), φ is
satisfiable, φ⇒ ψσ is valid, and σ [φ] ◦−→ τ [φ].

Here σ [φ] ◦−→ τ [φ] denotes σ(x) [φ] ◦−→ τ(x) [φ] for all variables x ∈ Dom(σ). The multi-step
rewrite relation ∼◦−→ on constrained terms is then defined as ∼ · ◦−→ · ∼.

Lemma 11. If s [φ] ◦−→ t [φ] then sδ ◦−→ tδ for all substitutions δ ⊨ φ.

Proof. We proceed by induction on ◦−→. In case 1 we have x [φ] ◦−→ x [φ], and xδ ◦−→ xδ
holds trivially. In case 2 we have s = f(s1, . . . , sn), t = f(t1, . . . , tn) and si [φ] ◦−→ ti [φ] for
1 ⩽ i ⩽ n. From the induction hypothesis we obtain siδ ◦−→ tiδ for all 1 ⩽ i ⩽ n, which further
implies sδ ◦−→ tδ. In case 3 we have s = ℓσ and t = rσ for some rule ρ : ℓ→ r [ψ] ∈ Rrc, σ(x) ∈
Val∪Var(φ) for all x ∈ LVar(ρ), φ is satisfiable, φ⇒ ψσ is valid, and σ(x) [φ] ◦−→ τ(x) [φ] for
all x ∈ Var(φ). From the induction hypothesis we obtain σ(x)δ ◦−→ τ(x)δ for all x ∈ Var(φ).
Moreover, since δ ⊨ φ we have δ ⊨ ψσ and thus also σδ ⊨ ψ. Therefore sδ = ℓσδ ◦−→ rτδ = tδ
as desired.

Lemma 12. If s ≈ t [φ]
∼◦−→⩾1 u ≈ v [ψ] then for all substitutions σ ⊨ φ there exists a δ ⊨ ψ

such that sσ ◦−→ uδ and tσ = vδ.

Proof. By unfolding the definition of ∼◦−→ we obtain s ≈ t [φ] ∼ s′ ≈ t′ [φ′] ◦−→⩾1 u
′ ≈ v′ [φ′] ∼

u ≈ v [ψ]. Let σ be a substitution with σ ⊨ φ. From the definition of ∼ we obtain a substitution
τ such that τ ⊨ φ′, sσ = s′τ and tσ = t′τ . As all contracted redexes in the multi-step s′ ≈ t′ [φ′]
are below the position 1, this corresponds to case 2 in Definition 10 with s′ and t′ being the first
and second argument of ≈. Hence s′ [φ′] ◦−→ u′ [φ′] and t′ = v′. We therefore obtain t′τ = v′τ
and s′τ ◦−→ u′τ from Lemma 11. Now considering the equivalence u′ ≈ v′ [φ′] ∼ u ≈ v [ψ]
together with τ ⊨ φ′ we obtain a substitution δ such that δ ⊨ ψ, u′τ = uδ and v′τ = vδ. Putting
this all together we have sσ = s′τ ◦−→ u′τ = uδ and tσ = t′τ = v′τ = vδ.

Definition 13. A constrained critical pair s ≈ t [φ] is development closed if s ≈ t [φ]
∼◦−→⩾1

u ≈ v [ψ] for some trivial u ≈ v [ψ]. A constrained critical pair is almost development closed if
it is an inner critical pair and development closed, or it is an overlay and s ≈ t [φ] ∼◦−→⩾1 · ∼→∗

⩾2

u ≈ v [ψ] for some trivial u ≈ v [ψ]. An LCTRS is called (almost) development closed if all
its constrained critical pairs are (almost) development closed.

Lemma 14. If a constrained critical pair s ≈ t [φ] is almost development closed then for all
substitutions σ with σ ⊨ φ we have sσ ◦−→ · ∗← tσ.

Proof. Let s ≈ t [φ] be an almost development closed constrained critical pair, and σ ⊨ φ some
substitution. From Definition 13 we obtain s ≈ t [φ] ◦−→⩾1 u

′ ≈ v′ [ψ′] →∗
⩾2 u ≈ v [ψ] where

uτ = vτ for all τ ⊨ ψ for some constrained term u′ ≈ v′ [ψ′]. Looking at the first part of
the sequence, s ≈ t [φ] ◦−→⩾1 u

′ ≈ v′ [ψ′] and sσ ◦−→ u′δ where v′δ = tσ for some δ ⊨ ψ′

by Lemma 12. For the second part of the sequence u′ ≈ v′ [ψ′] →∗
⩾2 u ≈ v [ψ] we obtain

v′δ →∗ vγ, u′δ = uγ for some γ ⊨ ψ, by repeated application of Lemma 8. Moreover we have
uγ = vγ. Hence sσ ◦−→ u′δ = uγ = vγ ∗← v′δ = tσ.

Theorem 15. If an LCTRS R is almost development closed then so is R.

7

Reducing Confluence of LCTRSs to Confluence of TRSs Mitterwallner, Schöpf, Middeldorp

Proof. Take any critical pair s ≈ t from R. From Theorem 5 we know that there exists a
constrained critical pair s′ ≈ t′ [φ] in R where s′σ = s and t′σ = t for some σ ⊨ φ. Since
the constrained critical pair must be almost development closed, Lemma 14 yields s = s′σ ◦−→
· ∗← t′σ = t if it is an overlay and s = s′σ ◦−→ t′σ = t otherwise. This proves that R is almost
development closed.

Interestingly, the converse does not hold, as seen in the following example.

Example 16. Consider the LCTRS R with the theory LIA and consisting of the rules:

f(x)→ g(x) f(x)→ h(x) [1 ⩽ x ⩽ 2] g(x)→ h(2) [x = 2z] g(x)→ h(1) [x = 2z + 1]

The TRS R consists of the rules

f(x)→ g(x) f(1)→ h(1) g(n)→ h(1) for all odd n ∈ Z
f(2)→ h(2) g(n)→ h(2) for all even n ∈ Z

and has two (modulo symmetry) critical pairs g(1) ≈ h(1) and g(2) ≈ h(2). Since g(1) ◦−→ h(1)
and g(2) ◦−→ h(2), R is almost development closed. The constrained critical pair g(x) ≈
h(x) [1 ⩽ x ⩽ 2] is not almost development closed, since it is a normal form with respect to
the rewrite relation on constrained terms.

This also makes intuitive sense, since a rewrite step s ≈ t [φ] ∼→ u ≈ v [ψ] implies that
the same step can be taken on all instances sσ ≈ tσ where σ ⊨ φ. However it may be the
case, like in the above example, that different instances of the constrained critical pair require
different steps to obtain a closing sequence, which cannot directly be modeled using rewriting
on constraint terms.

Since left-linearity of R is preserved and left-linear almost development closed TRSs are
confluent [3] the following corollary is obtained via Theorem 15. In fact R only has to be linear
in the variables x /∈ LVar, since that is sufficient for R to be linear.

Corollary 17. Left-linear almost development closed LCTRSs are confluent.

4 Conclusion
We presented a left-linearity preserving transformation from LCTRSs into TRSs such that crit-
ical pairs in the latter correspond to constrained critical pairs in the former. As a consequence,
confluence results for TRSs based on restricted joinability conditions carry directly over to
LCTRSs. This drastically simplifies correctness proofs (like the ones in [1, 2]) and makes the
formalization of confluence proofs for LCTRSs in a proof assistant a realistic goal.

References
[1] Cynthia Kop and Naoki Nishida. Term rewriting with logical constraints. In Proc. 9th FRoCoS,

volume 8152 of LNAI, pages 343–358, 2013. doi:10.1007/978-3-642-40885-4_24.
[2] Jonas Schöpf and Aart Middeldorp. Confluence criteria for logically constrained rewrite systems.

In Proc. 29th CADE, LNAI, 2023. To appear.
[3] Vincent van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–181,

1997. doi:10.1016/S0304-3975(96)00173-9.
[4] Sarah Winkler and Aart Middeldorp. Completion for logically constrained rewriting. In Proc. 3rd

FSCD, volume 108 of LIPIcs, pages 30:1–30:18, 2018. doi:10.4230/LIPIcs.FSCD.2018.30.

8

https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1016/S0304-3975(96)00173-9
https://doi.org/10.4230/LIPIcs.FSCD.2018.30

On Confluence Criteria for Non-terminating

Abstract Rewriting Systems

Ievgen Ivanov

Taras Shevchenko National University of Kyiv, Ukraine
ivanov.eugen@gmail.com

Abstract

We give a summary of confluence criteria based on the generalized Newman’s lemma
recently proposed in [6]. The mentioned criteria are applicable to wide classes of not-
necessarily-terminating abstract rewriting systems, in particular those that arise from
reachability relations on states of discrete-continuous (hybrid) dynamical models.

1 Introduction

Textbooks and monographs related to term rewriting and/or its applications in computer sci-
ence (e.g. [7, 1, 8]) usually include a chapter on basic theory of abstract rewriting systems
(ARS). Besides other material, such a chapter typically includes a definition of the confluence
property for ARS and Newman’s lemma [10] as a confluence criterion for terminating ARS.
Although in the literature one can find many other confluence conditions applicable to (special
classes of) abstract rewriting systems (e.g. Hindley-Rosen lemma [3, 12], Rosen’s request lemma
[12], Huet’s strong confluence lemma [4], De Bruijn’s lemma [2], Van Oostrom’s theorem [13,
Theorem 3.7] and its corollaries concerning locally decreasing and decreasing Church-Rosser
ARS), arguably, Newman’s lemma is the most widely known one. Among its intrinsic qualities
are simple formulation, reduction of global analysis to local analysis, and the lack of assumptions
about the structure of elements and/or the reduction relation. However, some new potential
application areas, like confluence analysis of ARS derived from reachability relations on states
of nondeterminisic discrete-continuous (hybrid) models (in particular, those that arise from
modeling of cyber-physical systems that combine computational and physical processes), are
beyond the scope of Newman’s lemma because of the termination assumption.

In [6] we proposed a generalization of Newman’s lemma that aimed to preserve its positive
qualities, but extend its scope to a wide class of not-necessarily-terminating ARS. The main
result of [6] was formalized and machine-checked in Isabelle 2022 proof assistant using HOL
logic in [5].

In this extended abstract we give a summary of the results of [6] and additional corollaries
from them.

2 Preliminaries

2.1 Standard Notions and Well-Known Facts

An abstract rewriting system (ARS) is a pair (A,→), where A is a set and → ⊆ A × A is a
binary relation called reduction1. We will use the following notation:

1In some works an ARS is allowed to have an indexed family of reduction relations. In this work we restrict
attention to rewriting systems with a single reduction relation.

9

On Confluence Criteria for Non-terminating Abstract Rewriting Systems I. Ivanov

• →+ is the transitive closure of →
• →∗ is the reflexive transitive closure of →
• ¬, ∨, ∧, ⇒ are logical negation, disjunction, conjunction, and implication respectively.

Also note that in this work we assume that the axiom of choice holds.
An ARS (A,→) is

• confluent, if ∀a, b, c ∈ A (a→∗ b ∧ a→∗ c⇒ ∃d ∈ A (b→∗ d ∧ c→∗ d))

• locally confluent, if ∀a, b, c ∈ A (a→ b ∧ a→ c⇒ ∃d ∈ A (b→∗ d ∧ c→∗ d))

• (weakly) normalizing, if ∀a ∈ A ∃ b ∈ A (a→∗ b ∧ ¬(∃c ∈ A b→ c))

• strongly normalizing, or, alternatively, terminating, or Noetherian, if there exists no infi-
nite reduction sequence a1 → a2 → ... (ai ∈ A)

• inductive, if for every (infinite) reduction sequence a1 → a2 → ... (where ai ∈ A for all
i ≥ 1) there exists a ∈ A such that an →∗ a for all n ≥ 1

• acyclic, if ¬∃a ∈ A (a→+ a).

Some well-known facts about these notions are [7, 1, 8, 4]:

1. Any terminating ARS is acyclic and inductive.

2. A terminating ARS is confluent if (and only if) it is locally confluent
(a variant of formulation of Newman’s lemma).

2.2 Topology on ARS

For any ARS (A,→) the relation→∗ can be considered as a preorder (a reflexive and transitive
relation). This fact can be used to transfer some preorder-specific notions to ARS and define a
topology on them as follows:

• a subset C ⊆ A is a chain (in the preordered set (A,→∗)), if

∀a, b ∈ C (a→∗ b ∨ b→∗ a)

• an element a ∈ A is an upper bound of a subset S ⊆ A (in the preordered set (A,→∗)), if

∀b ∈ S b→∗ a

• a ∈ A is a least upper bound of a subset S ⊆ A (in the preordered set (A,→∗)), if

(∀b ∈ S b→∗ a) ∧ ∀a′ ∈ A ((∀b ∈ S b→∗ a′)⇒ a→∗ a′).

• a subset S ⊆ A is closed [6] in the preordered set (A,→∗), if for each nonempty chain C
in (A,→∗) and for each a ∈ A, if a is a least upper bound of C and C ⊆ S, then a ∈ S.

• a subset S ⊆ A is open [6] in the preordered set (A,→∗), if A\S is closed in (A,→∗)
• for a given B ⊆ A, a subset S ⊆ B is relatively open [6] in B (in the preordered set

(A,→∗)), if S is open in the preordered set (B,→∗ ∩(B ×B)).

For any ARS (A,→) we will denote:

T (A,→) = {S ⊆ A | S is open in the preordered set (A,→∗)}.

10

On Confluence Criteria for Non-terminating Abstract Rewriting Systems I. Ivanov

2.3 Induction Principles for ARS and Related Facts

It is well-known (e.g. [8, paragraph 1.3.15]) that an ARS is terminating if and only if it has
sound Noetherian induction principle: for every unary predicate P : A→ {True, False}, if

∀a ∈ A ((∀b ∈ A (a→+ b⇒ P (b)))⇒ P (a))

holds, then ∀a ∈ A P (a).
We will say that an ARS (A,→)

• has sound open induction principle [11, 6], if for every unary predicate P : A→ {True, False}
such that {a ∈ A | P (a)} ∈ T (A,→) (i.e. the truth domain of P is open), if

∀a ∈ A ((∀b ∈ A (a→+ b⇒ P (b)))⇒ P (a))

holds, then ∀a ∈ A P (a)

• is strictly inductive [9, 6], if (A,→∗) is a strictly inductive preordered set, i.e. every
nonempty chain in (A,→∗) has a least upper bound in (A,→∗)

• is openly normalizing, if (A,→) is (weakly) normalizing and for each a, a′ ∈ A such that
a′ is a normal form of a (i.e. a→∗ a′ ∧ ¬(∃a′′ ∈ A a′ → a′′)), the set

{b ∈ A | a→∗ b and a′ is the only normal form of b }

is relatively open in {b ∈ A | a→∗ b} in the preordered set (A,→∗).

Proposition 1.

(1) An ARS has sound open induction principle if and only if it is acyclic and strictly inductive
[6, Proposition 14] (a related fact is [11, Theorem 3.3]).

(2) Any strictly inductive ARS is inductive (but is not necessarily terminating).

(3) Any terminating ARS is acyclic, strictly inductive, and openly normalizing.

Example 1. If [0, 1] denotes the real unit interval and → denotes the standard strict order on
real numbers restricted to [0, 1] (i.e. < ∩([0, 1]×[0, 1])), then the ARS ([0, 1],→) has sound open
induction principle, is strictly inductive, acyclic, openly normalizing, but is not terminating (e.g.
0.9→ 0.99→ 0.999→ ... is an infinite reduction sequence).

Example 2. The ARS ({1},→), where →= {(1, 1)}, is strictly inductive, but is not acyclic.
In fact, every ARS with finite set of elements is strictly inductive [6, Proposition 16].

3 Confluence Conditions for Strictly Inductive ARS

Below we give a necessary and sufficient condition for confluence of a strictly inductive ARS
(Theorem 1) and two more specialized confluence conditions (Lemma 1 and 2).

Firstly, let consider specialized conditions (they have simpler formulation).

Lemma 1. An acyclic and strictly inductive ARS is confluent if and only if it is openly nor-
malizing and locally confluent (a consequence of [6, Theorem 28]).

From Proposition 1(1) and Lemma 1(1) it follows that

11

On Confluence Criteria for Non-terminating Abstract Rewriting Systems I. Ivanov

Lemma 2. Let (A,→) be an ARS with sound open induction principle.
Then (A,→) is confluent if and only if it is openly normalizing and locally confluent.

Remark 3.1. The ordinary Newman’s lemma implies that if (A,→) is an ARS with sound
Noetherian induction principle, then (A,→) is confluent if and only if (A,→) is locally con-
fluent. Thus Lemma 2 can be considered as an extension of Newman’s lemma that replaces
Noetherian induction with open induction [11]. The open normalization condition is not needed
in the case of terminating ARS, because every terminating ARS is openly normalizing.

Note that the local confluence condition is not so useful in confluence criteria when a reduc-
tion relation → is transitive (since in this case the notions of confluence and local confluence
become almost trivially equivalent). To obtain useful confluence conditions in the case of a
transitive reduction relation, and also to cover cases where an ARS is not acyclic, we introduce
the following notions.

Let (A,→) be an ARS and a, a′ ∈ A. Then

• a is quasi-irreducible [6], if ∀b ∈ A (a→∗ b⇒ b→∗ a)

• a′ is a quasi-normal form (QNF [6]) of a, if a→∗ a′ and a′ is quasi-irreducible

• a, a′ are QNF-equivalent [6], if {b ∈ A | b is a QNF of a} = {b ∈ A | b is a QNF of a′}.

An ARS (A,→) is

• quasi-normalizing [6], if each a ∈ A has a quasi-normal form

• openly quasi-normalizing [6], if (A,→) is quasi-normalizing and for all a, a′ ∈ A, if a′ is a
quasi-normal form of a, the set

{b ∈ A | a→∗ b ∧ b and a′ are QNF-equivalent }

is relatively open in {b ∈ A | a→∗ b} in the preordered set (A,→∗).

• quasi-locally confluent [6], if for each a ∈ A there exists S ⊆ {a′ ∈ A | a →+ a′} such
that the following two conditions hold (called in [6] the two-consistency and coinitiality
condition respectively):

∀b, c ∈ S ∃d ∈ A (b→∗ d ∧ c→∗ d),

∀a′ ∈ A (a→+ a′ ⇒ (a′ →∗ a) ∨ (∃b ∈ S b→∗ a′ ∧ ¬(b→∗ a))).

Lemma 3. Let (A,→) be an acyclic ARS. Then

(1) (A,→) is quasi-normalizing if and only if (A,→) is (weakly) normalizing

(2) (A,→) is openly quasi-normalizing if and only if (A,→) is openly normalizing

(3) if (A,→) is locally confluent, then (A,→) is quasi-locally confluent [6, Proposition 27].

Theorem 1 ([6], Theorem 28). Let (A,→) be a strictly inductive ARS. Then (A,→) is confluent
if and only if (A,→) is openly quasi-normalizing and quasi-locally confluent.

Note that one cannot simply omit the strict inductivity assumption, or the open quasi-
normalization, or quasi-local confluence condition from the statement of Theorem 1:

12

On Confluence Criteria for Non-terminating Abstract Rewriting Systems I. Ivanov

Proposition 2. (1) There exists a strictly inductive and quasi-locally confluent ARS that is
not confluent. An example of such an ARS is (A,→), where A = {(x, t) ∈ R×R | t ≤ 0}
and (x, t)→ (x′, t′) if and only if t < t′ ∧ x′ − x ≤ t′ − t ∧ x ≤ x′ (also see [6, Example
31]).

(2) There exists a strictly inductive and openly quasi-normalizing ARS that is not confluent.
An example of such an ARS is ({0, 1, 2},→), where →= {(0, 1), (0, 2)}.

(3) There exists an inductive, openly quasi-normalizing, and quasi-locally confluent ARS that
is not confluent. An example of such an ARS is (N0×{0, 1},→), where N0 = {0, 1, 2, ...}
is the set of non-negative integers and (i, j) → (i′, j′) if and only if (1 ≤ i < i′ ∧ j =
j′) ∨ (i ≥ 1 ∧ i′ = 0).

Note that example ARS explicitly mentioned in Proposition 2 are not confluent. An example
of a strictly inductive, confluent ARS with more than one irreducible element that is in the
scope of the confluence criterion given in Theorem 1 can be found in [6, Example 32]:

([0, 1]× [0, 1],→), where [0, 1] is the real unit interval and (a, b)→ (a′, b′) if and only if (a <
a′ ∨ (a = a′∧b′ < b∧(a < 1∨b < 1)))∧(a−b ≤ a′−b′)∧ (a = b⇒ a′ = b′)∧(a ≤ b⇒ a′ ≤ b′).
Note that here (1, 0) and (1, 1) are irreducible.

Other similar examples can be constructed using reachability relations on states of nondeter-
ministic discrete-continuous dynamical models, e.g. see a nondeterministic model of a bouncing
ball in [6, Figures 4–6].

References

[1] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge university press, 1999.

[2] N.G. de Bruijn. A note on weak diamond properties. Memorandum 7808, Eindhoven Uninversity
of Technology, 1978.

[3] J.R. Hindley. The Church–Rosser property and a result in combinatory logic. PhD thesis, Uni-
versity of Newcastle-upon-Tyne, 1964.

[4] Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting sys-
tems. Journal of the ACM, 27(4):797–821, 1980.

[5] Ievgen Ivanov. Formalization of Generalized Newman’s Lemma. https://doi.org/10.5281/

zenodo.7855691, 2023. [Online].

[6] Ievgen Ivanov. Generalized Newman’s lemma for discrete and continuous systems. In 8th Inter-
national Conference on Formal Structures for Computation and Deduction (FSCD 2023), Leibniz
International Proceedings in Informatics (LIPIcs), 2023. (Accepted for publication).

[7] Jan Willem Klop. Term rewriting systems. Centrum voor Wiskunde en Informatica, 1990.

[8] Philippe Malbos. Lectures on algebraic rewriting. http://hal.archives-ouvertes.fr/

hal-02461874, 2019. [Online].

[9] George Markowsky. Chain-complete posets and directed sets with applications. Algebra universalis,
6(1):53–68, 1976.

[10] Maxwell Herman Alexander Newman. On theories with a combinatorial definition of “equivalence”.
Annals of mathematics, pages 223–243, 1942.

[11] Jean-Claude Raoult. Proving open properties by induction. Information processing letters,
29(1):19–23, 1988.

[12] B.K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM,
20:160–187, 1973.

[13] Vincent Van Oostrom. Confluence by decreasing diagrams. Theoretical computer science,
126(2):259–280, 1994.

13

https://doi.org/10.5281/zenodo.7855691
https://doi.org/10.5281/zenodo.7855691
http://hal.archives-ouvertes.fr/hal-02461874
http://hal.archives-ouvertes.fr/hal-02461874

Church–Rosser Modulo for Left-Linear TRSs Revisited

Johannes Niederhauser1, Nao Hirokawa2, and Aart Middeldorp1

1 Department of Computer Science, University of Innsbruck, Austria
2 School of Information Science, JAIST, Japan

Abstract

It is known that ordinary critical pairs suffice to establish the Church–Rosser property
modulo an equational theory B for a left-linear and B-terminating TRS. We extend this
result to prime critical pairs by introducing a new confluence criterion for ARSs.

1 Introduction

In this paper, we present a new characterization of the Church–Rosser property modulo an
equational theory B for left-linear TRSs which are terminating modulo B. This works for
every variable-preserving (i.e., Var(ℓ) = Var(r) for all ℓ ≈ r ∈ B) equational theory B. The
result is based on an observation due to Huet [3] but allows us to use prime critical pairs [4]
instead of ordinary critical pairs. The proof of our new result is facilitated by peak-and-cliff
decreasingness, an extension of peak decreasingness [2] which is a simple confluence criterion for
ARSs designed to replace complicated proof orderings in the correctness proofs of completion
procedures. Both the confluence criterion as well as the main result are crucial ingredients of a
novel fairness condition for left-linear B-completion presented in our recent paper [5]. For the
special case of AC, we also present a novel counterexample which shows the necessity of AC
termination as a precondition of the main theorem. To the best of our knowledge, this was not
documented before.

2 Preliminaries

We assume that the reader is familiar with term rewriting but recapitulate the important
definition of (prime) critical pairs. Let R be a TRS. An overlap is a triple ⟨ℓ1 → r1, p, ℓ2 → r2⟩
satisfying the following properties:

• ℓ1 → r1 and ℓ2 → r2 are variants of rewrite rules of R without common variables,

• p is a non-variable position in ℓ2,

• ℓ1 and ℓ2|p are unifiable, and

• if p = ϵ then ℓ1 → r1 and ℓ2 → r2 are not variants.

Let σ be a most general unifier of ℓ1 and ℓ2|p. The corresponding critical peak

ℓ2σ[r1σ]p
p←− ℓ2σ ϵ−→ r2σ

represents the two ways in which ℓ2σ can be rewritten and the equation ℓ2σ[r1σ]p ≈ r2σ is its
associated critical pair. The set of critical pairs of a TRS R is denoted by CP(R). A critical
peak t

p←− s ϵ−→ u is prime if all proper subterms of s|p are in normal form. Critical pairs derived

14

Church–Rosser Modulo for Left-Linear TRSs Revisited J. Niederhauser et al.

from prime critical peaks are called prime. The set of all prime critical pairs of a TRS R is
denoted by PCP(R). Throughout the paper, we use the following abbreviations:

↓∼R = →∗
R · ∼B · →∗

R
B± = B ∪ {r ≈ ℓ | ℓ ≈ r ∈ B}

CP±(R1,R2) = CP(R1,R2) ∪ CP(R2,R1)

Here CP(R1,R2) denotes the set of critical pairs (t, u) that originate from critical peaks of the
form t →p

R1
s→ϵ

R2
u. The starting point of our work is the following result by Huet [3].

Lemma 1. For left-linear TRSs R, the inclusion →R · ↔B ⊆ ↓∼R ∪ ↔CP±(R,B±) holds.

Note that Lemma 1 allows us to use ordinary critical pairs instead of B-critical pairs. In
particular, equational unification modulo B can be replaced by syntactic unification which
improves efficiency. Furthermore, the form of the joining sequence (↓∼R) is advantageous as it
uses the normal rewrite relation and just one B-equality check in the end as opposed to rewrite
steps modulo the theory (∼B · →R · ∼B). However, left-linearity is necessary in Lemma 1 as
the following example illustrates.

Example 1. Consider the TRS R consisting of the single rule f(x, x) → x with + as an
additional AC function symbol. Consider the conversion

x+ y →R f(x+ y, x+ y) ∼AC f(x+ y, y + x)

There are no critical pairs in R and between R and AC±, so CP(R) = CP±(R,AC±) = ∅.
Moreover, x+y ↓∼R f(x+y, y+x) does not hold because x+y and f(x+y, y+x) are R-normal
forms which are not AC equivalent.

3 Peak-and-Cliff Decreasingness

In the following, we assume that equivalence relations ∼ are defined as the reflexive and transi-
tive closure of a symmetric relation , so ∼ = ∗. We refer to conversions of the form ← ·
or · → as local cliffs. Furthermore, we assume that steps are labeled with labels from a set
I, so let A = ⟨A, {→α}α∈I⟩ be an ARS and ∼ = (

⋃ { α | α ∈ I })∗ an equivalence relation
on A.

Definition 1. The ARS A is peak-and-cliff decreasing if there is a well-founded order > on I
such that for all α, β ∈ I the inclusions

→α · →β ⊆ ∗⇐===⇒∨αβ
→α · β ⊆ ∗⇐==⇒∨α

· =←−
β

hold. Here <αβ denotes the set {γ ∈ I | α > γ or β > γ} and if J ⊆ I then →J denotes⋃ {→γ | γ ∈ J }. We abbreviate <αα to <α.

In the remainder of this section, we show that peak-and-cliff decreasingness implies the
Church–Rosser modulo ∼ property.

Lemma 2. Every conversion modulo ∼ is a valley modulo ∼ or contains a local peak or cliff:

⇔∗ ⊆ ↓∼ ∪⇔∗ · ← · → · ⇔∗ ∪⇔∗ · · → · ⇔∗ ∪⇔∗ · ← · · ⇔∗

15

Church–Rosser Modulo for Left-Linear TRSs Revisited J. Niederhauser et al.

Proof. We define ↼⇀ = ⇔∗ · ← · → · ⇔∗ ∪ ⇔∗ · · → · ⇔∗ ∪ ⇔∗ · ← · · ⇔∗ in order to
simplify the notation. Suppose a ⇔n b. We show that a ↓∼ b or a ↼⇀ b by induction on n. If
n = 0 then a = b and therefore also a ↓∼ b. If n > 0 then a ⇔ c ⇔n−1 b for some c. The
induction hypothesis yields c ↓∼ b or c ↼⇀ b. In the latter case we are already done because
⇔ ·↼⇀ ⊆↼⇀. In the former case, we distinguish between three subcases: a→ c, a← c or a ∼ c.
If a → c, we immediately obtain a ↓∼ c. For the remaining two cases, note that there exists a
k such that c→k · ∼ · →∗ b. We continue with a case analysis on k:

• k = 0: If a ← c we have a ← c ∼ c′ →∗ b for some c′. Now either c = c′ and a ↓∼ b or
c · ∼ c′ and therefore a ↼⇀ b. If a ∼ c we have a ↓∼ b because ∼ is transitive.

• k > 0: If a ← c then there exists a c′ such that a ← c → c′ ⇔∗ b and therefore a ↼⇀ b.
Finally, if a ∼ c then a ∼ c→ c′ ⇔∗ b for some c′. If a = c then we obtain a ↓∼ b from the
induction hypothesis as there is a conversion between a and b of length n− 1. Otherwise,
a ∼ · c and therefore a ↼⇀ b.

The proof of the following theorem is based on a well-founded order on multisets. We denote
the multiset extension of an order > by >mul. It is well-known that the multiset extension of a
well-founded order is also well-founded.

Theorem 1. If A is peak-and-cliff decreasing then A is Church–Rosser modulo ∼.
Proof. With every conversion C we associate a multiset MC consisting of labels of its rewrite
and equivalence relation steps. Since A is peak-and-cliff decreasing, there is a well-founded
order > on I which allows us to replace conversions C of the forms →α · →β , →α · β and

β · →α by conversions C ′ where MC >mul MC′ . Hence, we prove that A is Church–Rosser
modulo ∼, i.e., ⇔∗ ⊆ ↓∼, by well-founded induction on >mul. Consider a conversion a ⇔∗ b
which we call C. By Lemma 2 we either have a ↓∼ b (which includes the case that C is empty)
or one of the following cases holds:

a⇔∗ · ← · → · ⇔∗ b a⇔∗ · ← · · ⇔∗ b a⇔∗ · · → · ⇔∗ b

If a ↓∼ b we are immediately done. In the remaining cases, we have a local peak or cliff with
concrete labels α and β, so MC = Γ1 ⊎ {α, β} ⊎ Γ2. Since A is peak-and-cliff decreasing, there
is a conversion C ′ with MC′ = Γ1 ⊎ Γ ⊎ Γ3 where {α, β} >mul Γ. Hence, MC >mul MC′ and we
finish the proof by applying the induction hypothesis.

For the main result of this paper, a simpler version of peak-and-cliff decreasingness suffices.

Definition 2. Let A = ⟨A,→⟩ be an ARS equipped with a ∼-compatible well-founded order >

on A and ∼ = ∗ an equivalence relation on A. We write b
a−→ c (b

a
c) if b→ c (b c) and

b ∼ a. We say that A is source decreasing modulo ∼ if the inclusions

← a→ ⊆ ∗⇐==⇒∨a
← a ⊆ ∗⇐==⇒∨a

· =←−
a

hold for all a ∈ A. Here← a→ (← a) denotes the binary relation consisting of all pairs (b, c)

such that a→ b and a→ c (a c). Furthermore,
∗⇐==⇒∨a

denotes the binary relation consisting

of all pairs of elements which are connected by a conversion where each step is labeled by an
element smaller than a.

Corollary 1. Every ARS which is source decreasing modulo ∼ is Church–Rosser modulo ∼.
Proof. In the definition of peak decreasingness we set I = A. Note that this implies α = β for
all local peaks and cliffs. Hence, the ARS is peak-and-cliff decreasing and we can conclude by
an appeal to Theorem 1.

16

Church–Rosser Modulo for Left-Linear TRSs Revisited J. Niederhauser et al.

4 Prime Critical Pairs

In the following, PCP±(R,B±) denotes the restriction of CP±(R,B±) to prime critical pairs but
where irreducibility is always checked with respect to R, i.e., the critical peaks t →p

R s ↔ϵ
B u

and t′ ↔p
B s→ϵ

R u′ are both prime if proper subterms of s|p are irreducible with respect to R.

Example 2. Consider the TRS R consisting of the rewrite rules

f(a+ x) → x f(x+ a) → x f(b+ x) → x f(x+ b) → x a → b

and let B = {x+ y ≈ y + x}. The TRS R admits six (modulo symmetry) critical peaks of the
form t →p

R s→ϵ
R u:

f(a+ a)

a a

f(a+ b)

a b

f(b+ a)

a b

f(b+ b)

b b

f(a+ x)

f(b+ x) x

f(x+ a)

f(x+ b) x

Here the positions p in s are indicated by underlining. The first three peaks are not prime due
to the reducible proper subterm a in s|p. So PCP(R) = {b ≈ b, f(b + x) ≈ x, f(x + b) ≈ x}.
Similarly, R and B admit four critical peaks of the forms t →p

R s↔ϵ
B u and t↔p

B s→ϵ
R u:

f(a+ x)

f(x+ a) x

f(x+ a)

f(a+ x) x

f(b+ x)

f(x+ b) x

f(x+ b)

f(b+ x) x

Here the first two peaks are not prime and thus PCP±(R,B±) = {f(b+ x) ≈ x, f(x+ b) ≈ x}.

Definition 3. Given a TRS R and terms s, t and u, we write t ▽s u if s→+
R t, s→+

R u, and
t ↓R u or t ↔PCP(R) u. We write t ▽∼

s u if s →+
R t, s ∼ u and t ↓∼R u or t ↔PCP±(R,B±) u.

Furthermore, ▽∼
s = {(u, t) | t ▽∼

s u}.

Note that the joinability of ordinary critical peaks is not affected by incorporating B into
conversions. Hence, the following result is taken from [2, Lemma 2.15] and therefore stated
without a proof.

Lemma 3. Let R be a TRS. If t
p←−−R s

ϵ−−→R u is a critical peak then t ▽2
s u.

Lemma 4. Let R be a TRS. The following two inclusions hold:

1. If t
p←−−R s

ϵ←→B u is a critical peak then t ▽s · ▽∼
s u.

2. If t
p←→B s

ϵ−−→R u is a critical peak then t ▽∼
s · ▽s u.

Proof. We only prove (1) as the other case is symmetrical. If all proper subterms of s|p are in
normal form with respect to →R, t ≈ u ∈ PCP(R,B±) which establishes t ▽∼

s u. Since also
t ▽s t, we obtain the desired result. Otherwise, there are a position q > p and a term v such

that s
q−−→R v and all proper subterms of s|q are in normal form with respect to →R. Together

with Lemma 1 we obtain either v ↓∼R u or v ↔PCP±(R,B±) u. In both cases v ▽∼
s u holds. A

17

Church–Rosser Modulo for Left-Linear TRSs Revisited J. Niederhauser et al.

similar case analysis applies to the local peak t
p←−−R s

q−−→R v: By the Critical Pair Lemma,

either t ↓R v or t↔CP(R) v. In the latter case

v|p
q\p←−−R s|p ϵ−−→R t|p

is an instance of a prime critical peak as q > p and all proper subterms of s|q are in normal form
with respect to →R. Closure of rewriting under contexts and substitutions yields t↔PCP(R) v.
Therefore, we have t ▽s v in both cases, concluding the proof.

The following lemma generalizes the previous results of this section to arbitrary local peaks
and cliffs.

Lemma 5. Let R be a left-linear TRS. The following two properties hold:

1. If t →R s→R u then t ▽2
s u.

2. If t →R s↔B u then t ▽s · ▽∼
s u.

Proof. We only prove (2) as the proof of (1) (which depends on the Critical Pair Lemma)
can be found in [2, Lemma 2.16]. Let t →R s ↔B u. From Lemma 1 we obtain t ↓∼R u or
t ↔CP±(R,B±) u. In the former case we are done as t ▽s u ▽s u. For the latter case we
further distinguish between the two subcases t →CP(R,B±) u and u →CP(B±,R) t. Note that
this list of subcases is exhaustive due to the direction of the local cliff. If t →CP(R,B±) u,
t ▽s · ▽∼

s u follows from Lemma 4(1) and closure of rewriting under contexts and substitutions.
If u →CP(B±,R) t, u ▽∼

s · ▽s t and therefore t ▽s · ▽∼
s u follows from Lemma 4(2) as well as

closure of rewriting under contexts and substitutions.

Now, we are able to prove the main result of this section, a novel necessary and sufficient
condition for the Church–Rosser property modulo an equational theory B which strengthens
the original result from [3] to prime critical pairs.

Theorem 2. A left-linear TRS R which is terminating modulo B is Church–Rosser modulo B
if and only if PCP(R) ∪ PCP±(R,B±) ⊆ ↓∼R.

Proof. The “only if” direction is trivial. For a proof of the “if” direction, we show that R is
source decreasing; the Church–Rosser property modulo B is then an immediate consequence of
Corollary 1. From the termination of R modulo B we obtain the well-founded order > =→+

R/B.
Consider an arbitrary local peak t →R s →R u. Lemma 5(1) yields a term v such that

t ▽s v ▽s u. Together with PCP(R) ⊆ ↓∼R we obtain t ↓∼R v ↓∼R u. By definition, s > t, v, u so
the corresponding condition required by source decreasingness is fulfilled.

Now consider an arbitrary local cliff t →R s ↔B u. Lemma 5(2) yields a term v such
that t ▽s v ▽∼

s u. Together with PCP(R) ∪ PCP±(R,B±) ⊆ ↓∼R we obtain t ↓∼R v ↓∼R u. By
definition, s > t, v and s ∼ u. The conversion between v and u is of the form v →∗

R · ∼ · →k
R u

for some k. If k = 0 then all steps between v and u are labeled with terms which are smaller
than s. If k > 0 then there exists a w < s such that v →∗

R · ∼ · →k−1
R w →R u. In this

case all steps of the conversion are labeled with terms which are smaller than s except for the
rightmost step which we may label with s. Hence, the corresponding condition required by
source decreasingness is fulfilled in all cases.

Example 3 (continued from Example 2). One can verify the termination of R/B and the
inclusion PCP(R) ∪ PCP±(R,B±) ⊆ ↓∼R. By Theorem 2 the Church–Rosser modulo property
holds.

18

Church–Rosser Modulo for Left-Linear TRSs Revisited J. Niederhauser et al.

Finally, we show that the previous result does not hold if we just demand termination of
R. The counterexample shows this for the concrete case of AC and is based on Example 4.1.8
from [1] which uses an ARS. Note that the usage of prime critical pairs instead of critical pairs
has no effect.

Example 4. Consider the TRS R consisting of the rules

(b+ a) + a → a+ (a+ b) (a+ b) + a → a+ (a+ b) (a+ a) + b → a+ (a+ b)

a+ (a+ b) → b+ (a+ a) b+ (a+ a) → c

a+ (a+ b) → a+ (b+ a) a+ (b+ a) → d

where + is an AC function symbol. Clearly, the (prime) critical pairs of R are joinable modulo
AC because b+ (a+ a) ∼AC a+ (b+ a). For PCP±(R,AC±) we only have to consider the rules
which rewrite to c and d respectively since all other rules only involve AC equivalent terms.
Modulo symmetry, these (prime) critical pairs are

c ≈ b+ (a+ a) c ≈ (a+ a) + b c ≈ (b+ a) + a

c+ x ≈ b+ ((a+ a) + x) x+ c ≈ (x+ b) + (a+ a)

d ≈ a+ (a+ b) d ≈ (b+ a) + a d ≈ (a+ b) + a

d+ x ≈ a+ ((b+ a) + x) x+ d ≈ (x+ a) + (b+ a)

which can be joined by adding the rules

b+ ((a+ a) + x) → (b+ (a+ a)) + x (x+ b) + (a+ a) → x+ (b+ (a+ a))

a+ ((b+ a) + x) → (a+ (b+ a)) + x (x+ a) + (b+ a) → x+ (a+ (b+ a))

to R. The new (prime) critical pairs in PCP(R)∪PCP±(R,AC±) are trivially joinable modulo
AC as they are AC equivalent. To sum up, PCP(R)∪PCP±(R,AC±) ⊆ ↓∼R. Termination of R
can be checked by e.g. TTT2, but the loop

a+ (a+ b) →R a+ (b+ a) ∼AC a+ (a+ b)

shows that R is not AC terminating. We have c⇔∗ d but not c ↓∼R d as the terms are normal
forms and not AC equivalent. Hence, R is not Church–Rosser modulo AC.

References

[1] Jürgen Avenhaus. Reduktionssysteme. Springer Berlin Heidelberg, 1995. In German. doi:10.1007/
978-3-642-79351-6.

[2] Nao Hirokawa, Aart Middeldorp, Christian Sternagel, and Sarah Winkler. Abstract completion, for-
malized. Logical Methods in Computer Science, 15(3):19:1–19:42, 2019. doi:10.23638/LMCS-15(3:
19)2019.

[3] Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting systems.
Journal of the ACM, 27(4):797–821, 1980. doi:10.1145/322217.322230.

[4] Deepak Kapur, David R. Musser, and Paliath Narendran. Only prime superpositions need be
considered in the Knuth–Bendix completion procedure. Journal of Symbolic Computation, 6(1):19–
36, 1988. doi:10.1016/S0747-7171(88)80019-1.

[5] Johannes Niederhauser, Nao Hirokawa, and Aart Middeldorp. Left-linear completion with AC
axioms. In Brigitte Pientka and Cesare Tinelli, editors, Proc. 29th International Conference on
Automated Deduction, volume 14132 of Lecture Notes in Computer Science, 2023. To appear.

19

http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR%20x)%0A(RULES%0A%20p(p(b%2Ca)%2Ca)%20-%3E%20p(a%2Cp(a%2Cb))%0A%20p(p(a%2Cb)%2Ca)%20-%3E%20p(a%2Cp(a%2Cb))%0A%20p(p(a%2Ca)%2Cb)%20-%3E%20p(a%2Cp(a%2Cb))%0A%20p(a%2Cp(a%2Cb))%20-%3E%20p(b%2Cp(a%2Ca))%0A%20p(a%2Cp(a%2Cb))%20-%3E%20p(a%2Cp(b%2Ca))%0A%20p(b%2Cp(a%2Ca))%20-%3E%20c%0A%20p(a%2Cp(b%2Ca))%20-%3E%20d%0A%20p(b%2Cp(p(a%2Ca)%2Cx))%20-%3E%20p(p(b%2Cp(a%2Ca))%2Cx)%0A%20p(p(x%2Cb)%2Cp(a%2Ca))%20-%3E%20p(x%2Cp(b%2Cp(a%2Ca)))%0A%20p(a%2Cp(p(b%2Ca)%2Cx))%20-%3E%20p(p(a%2Cp(b%2Ca))%2Cx)%0A%20p(p(x%2Ca)%2Cp(b%2Ca))%20-%3E%20p(x%2Cp(a%2Cp(b%2Ca)))%0A)&strategy=auto
https://doi.org/10.1007/978-3-642-79351-6
https://doi.org/10.1007/978-3-642-79351-6
https://doi.org/10.23638/LMCS-15(3:19)2019
https://doi.org/10.23638/LMCS-15(3:19)2019
https://doi.org/10.1145/322217.322230
https://doi.org/10.1016/S0747-7171(88)80019-1

Residuation = Skolemised Confluence

Vincent van Oostrom

oostrom@javakade.nl

Abstract

We express local confluence and the diamond property by means of residuation on peaks
of steps. We extend residuation to peaks of reductions by means of tiling, and to 3-peaks
of faces by means of bricklaying, and investigate some ramifications of our approach.

Skolemising local confluence into residuation. Recall [18, 1] a rewrite system→ is locally
confluent (has the diamond property) if for every local peak [3] ϕ, ψ of co-initial steps there
exist reductions (steps) ψ′, ϕ′ constituting a confluence C(ϕ, ψ, ψ′, ϕ′), i.e. reductions such that
ϕ, ψ are co-initial, ψ′, ϕ′ are co-final, and ϕ, ψ′ and ψ, ϕ′ both compose. From the statement
we obtain by introducing two skolem-functions \ and / for ψ′ respectively ϕ′ (binary as they
depend on ϕ, ψ), the (equisatisfiable) statement that C(ϕ, ψ, ϕ \ ψ, ϕ / ψ) for every local peak
ϕ, ψ; see Fig. 1. We will refer to such skolem-functions from peaks to reductions as residuations.

ϕ′

ϕ ψϕ ψ

ϕ \ ψ ϕ / ψψ′

Figure 1: Local confluence (left) and its skolemisation (right)

Exploiting C is symmetric, a single skolem-function | (notation of [12, Sect. 8–12]) will do:

Lemma 1. → is locally confluent (has the diamond property) iff there is a single residuation
| to reductions (steps) such that C(ϕ, ψ, ψ | ϕ, ϕ | ψ), for all local peaks of steps ϕ, ψ.

Stated differently, we may assume \ is the converse of /, i.e. ϕ \ ψ = ψ / ϕ for local peaks ϕ, ψ,
hence that C(ϕ, ψ, ϕ \ ψ, ϕ / ψ) = C(ϕ, ψ, ψ / ϕ, ψ \ ϕ).

Residuation by tiling. The aim of both introducing local confluence and the diamond
property in [12] was to provide a way to establish global confluence by means of repeated
tiling [3, 12, 10, 17] with local confluences. Rephrased in terms of residuation, the aim was
to construct residuation for the rewrite system ↠ of reductions from the residuation for steps
→. Tiling can be described by means of a rewrite system ⇒ on conversions [3, 12, 18]. Tiling
rules transform peaks into valleys [3]. Formally, to do so we associate to each given confluence
C(ϕ, ψ, χ, ω) a rule ϕ−1 · ψ ⇒ χ · ω−1, where · and −1 denote composition and converse.
Applying such a rule ℓ ⇒ r to a conversion ς of shape ζ · ℓ · ξ yields ζ · r · ξ. If there is
at least one local confluence for every local peak ϕ, ψ then ⇒-normal forms are valleys, and
if there is at most one then ⇒ has random descent [12, 14] meaning that if there exists a
⇒-reduction to normal form, then all (maximal) ⇒-reductions end in that normal form and
all such ⇒-reductions have the same length. Thus, since skolemising local confluence or the
diamond property yields exactly one local confluence C(ϕ, ψ, ϕ \ ψ, ϕ / ψ) for every local peak
ϕ, ψ, normal forms for the corresponding rules ϕ−1 · ψ ⇒ (ϕ \ ψ) · (ϕ / ψ)−1 are valleys and

20

Residuation = Skolemised Confluence V. van Oostrom

unique (if they exist); cf. [19, Lem. 2].1 Accordingly, we may extend \, / on peaks of steps to
partial functions (with the same notations) on peaks ϕ, ψ of reductions by setting ϕ \ ψ := χ
and ϕ/ψ := ω if χ ·ω−1 is the⇒-normal form of ϕ−1 ·ψ, and both ϕ\ψ and ϕ/ψ to undefined
otherwise. This preserves \ and / being each other’s converse since −1 is an involution:

Proposition 2. \ is the converse of / on → iff the same holds for their extension to ↠.

Thus, if local confluence or the diamond property is expressed by means of a single residuation
| on peaks of steps, then so is (partially) its extension to peaks of reductions.

Partiality of extending residuation by tiling. The proviso in the definition of residua-
tion by tiling, turning the extensions \, / into partial functions only, is needed as tiling need
not terminate; an injudicious choice of residuations for steps may lead to their extension to
reductions being partial, even if the rewrite system is confluent.2 Still, a judicious choice then
always is available (though non-computably so) due to completeness of decreasing diagrams [13,
Prop. 2.3.28]:

Theorem 3. For any countable confluent rewrite system there are residuations on peaks of
steps that extend by tiling to residuations on peaks of reductions.

By inspection of the proof of [13, Prop. 2.3.28], we see the constructed residuations to be each
other’s converse, so that a locally confluent countable rewrite system is confluent iff there exists
a single residuation on peaks of steps that extends to a total residuation on peaks of reductions.

Although it is undecidable whether a locally confluent rewrite system→ is confluent, cf. [6],
various conditions sufficient for tiling to terminate are known [15]. For instance, if → is termi-
nating then its local confluence entails termination of tiling by Newman’s Lemma [12, Thm. 3],
and if → has the diamond property then tiling is terminating by [12, Thm. 1].

Residuation for reductions by recursion. The following (left, right) unit and composition
laws of residual systems [18, Sect. 8.7][12, 2, 9] are seen to hold by tiling ; see Fig. 2:

ϕ / ε = ϕ ε \ ϕ = ϕ
ϕ \ ε = ε ε / ϕ = ε

ϕ / (ψ · χ) ≃ (ϕ / ψ) / χ (ϕ · ψ) \ χ ≃ ψ \ (ϕ \ χ)
ϕ \ (ψ · χ) ≃ (ϕ \ ψ) · ((ϕ / ψ) \ χ) (ϕ · ψ) / χ ≃ (ϕ / χ) · (ψ / (ϕ \ χ))

where ϕ, ψ, χ range over reductions and where ≃ is Kleene-equality expressing that either both
sides denote and are equal, or that neither side denotes. The laws justify defining extend-

⇓⇓

⇓⇓

ϕ \ (ψ · χ)

ϕ \ ψ

ϕ ψ

χ

(ϕ / ψ) \ χ

ϕ / ψ

(ϕ / ψ) / χ

⇓⇓

⇓⇓

ψ / (ϕ \ χ)

ψ

ϕ

ϕ / χ

χ

(ϕ · ψ) / χ

ϕ \ χ

ψ \ (ϕ \ χ)

Figure 2: Composition laws for residuation

1Unlike [18, 4, 19] we do not assume that ϕ \ ϕ = ε or ϕ / ϕ = ε for a local peak ϕ, ϕ of identical steps.
2Seen e.g. by varying on Kleene’s [18, Fig. 1.2] example of a locally confluent but not confluent system [12].

21

Residuation = Skolemised Confluence V. van Oostrom

ing residuation from steps to reductions by recursion, having as base cases peaks where both
reductions are steps or one of them is empty, and as recursive clauses:

(ϕ · ψ) / (χ · ω) := ((ϕ / χ) · (ψ / (ϕ \ χ))) / ω
(ϕ · ψ) \ (χ · ω) := ψ \ ((ϕ \ χ) · ((ϕ / χ) \ ω))

where ϕ, χ range over steps and ψ, ω over non-empty reductions, which turn into the following
single recursive clause3 in case of a single residuation |, i.e. if \ is the converse of /:

(ϕ · ψ) | (χ · ω) := ((ϕ | χ) · (ψ | (χ | ϕ))) | ω

It is justified by the above laws governing the interaction between residuation and composition:
(ϕ ·ψ) | (χ · ω) ≃ ((ϕ · ψ) | χ) | ω ≃ ((ϕ | χ) · (ψ | (χ | ϕ))) | ω. Vice versa, since the laws give rise
to a (this) tiling strategy, the recursive definition is the least (when representing functions as
sets of pairs, ordering them by subset) extension of | satisfying them; cf. [4, II Lem. 4.32].

From vertical to horizontal tiling. We show any diagram tiled top–down by confluences
can be obtained by tiling left–right, now associating to a confluence C(ϕ, ψ, χ, ω) both a vertical
and horizontal tiling rule, ϕ−1 · ψ ⇒v χ · ω−1 respectively ϕ · χ ⇒h ψ · ω. The idea is then to

ω

ϕ
ψ

χ ⇓⇓v

ω

⇓3
⇓2

⇓1 ϕ
ψ

⇒⇒h⇒1

⇒2

χ ⇒3

ω
χ

ϕ
ψ

Figure 3: From vertical tiling (left) via tiled diagram (middle) to horizontal tiling (right)

reuse the same tiles, but from left to right instead of from top to bottom; Fig. 3.

Theorem 4. If ϕ−1 · ψ ⇒⇒v χ · ω−1 then ϕ · χ⇒⇒h ψ · ω, for reductions ϕ, ψ, χ, ω.

As Fig. 3 suggests, the proof can easily be adapted to show the numbers of vertical and horizontal
tiles indeed to be the same, and to the case of commutations C(ϕ, ψ, χ, ω) where ϕ, ω are
reductions of one rewrite system → and ψ, χ of another ⇝; that conversely ϕ · χ ⇒⇒h ψ · ω
entails ϕ−1 · ψ ⇒⇒v χ · ω−1 is then obtained by symmetry [16], for ← and ⇝. The theorem is
simpler to state and prove, and holds for global confluences and commutations, compared to
just for local confluences as in [4, II Sect. 4.2, Lem. 4.24, Prop. 4.34].

3-confluence. Call a rewrite system→ (locally) 3-confluent if every 3-peak ϕ, ψ, χ of co-initial
reductions (steps) can be completed by 9 reductions into a (local) brick as in Fig. 4 left. (If
local 3-confluence holds using steps, → has the cube property.) If local confluence is given by
a residuation | that extends to a total residuation on reductions, local 3-confluence may fail
due to failure of the cube law [11] (ς | ζ) | (ξ | ζ) = (ς | ξ) | (ζ | ξ). This failure is well-known
(since at least the 90s) for systems such as positive braids, TRSs and the λβ-calculus; cf. [16].
(Even if the diamond property holds, the cube property may fail; cf. gadget qp2 in Fig. 5.) We

3In Haskell: resred (i:u) (j:v) = resred ((resstp i j)++(resred u (resstp j i))) v, where resstp

is the given residuation on steps and resred its extension to reductions, represented as lists of steps.

22

Residuation = Skolemised Confluence V. van Oostrom

give ways to extend local 3-confluence to 3-confluence by bricklaying. Decreasing diagrams [13]
(DD) is one way, when defining a brick to be 3-decreasing if its 6 faces are decreasing. This
is shown by induction, measuring a 3-peak by the multiset sum of the lexicographic maximum
measures [13] of the 3 reductions in it, with the decrease of measure from the 3-peak ϕ, ψ · ψ̄, χ
to ϕ′, ψ̄, χ′ visualised on the right in Fig. 4, and the induction step(s) on the left.

χ̄
IH3

IH1

IH2

DCR

ψ̄

χ′χ DCR

ψ

ϕ′
ϕ

ψ̄ψ

ϕ′ϕ

ϕ̄

χ χ′

Figure 4: Induction (left) and decrease in measure (right) of 3-decreasingness by bricklaying

Theorem 5 (3-DD). A locally 3-decreasing rewrite system is 3-decreasing; cf. [13, Thm. 2.3.20].

As corollaries we obtain that systems that are terminating and locally 3-confluent, or that have
the cube property, are 3-confluent. Using that DD is complete for countable confluent systems,
cf. [13, Prop. 2.3.28], we even have that any such system is 3-confluent, if we are free to choose
residuation to ‘go to’ the least common reduct on a chosen spanning forest [5, 8].

Lemma 6. A countable confluent rewrite system is locally 3-decreasing for some residuation.

Bricklaying. Analogously to how tiling a peak of reductions with local confluences turns
it into a valley, bricklaying with local bricks is a way to turn a 3-peak into a 3-valley. Also
analogously: an injudicious choice of local bricks may lead to non-termination of bricklaying
(even if the system is 3-confluent). We define bricklaying in an attempt to make sense of
that. Whereas (2D) tiling has (1D) conversions as intermediate stages, we introduce (2D) beds
as intermediate stages of (3D) bricklaying. As a first approximation to beds we use graphs
having (red, blue, green) coloured edges to model steps in 3 dimensions, which we then embed.
(Hypermaps as in [7] could be a suitable alternative; we leave this to future research.)

F
G′ H ′

F ′

⇛ϕ ψ

χ

H G

Figure 5: Bricklaying (left) and gadget qp2 (right; dashed arrows indicate recursive nature)

Definition 7. A bed -dag for a rewrite system→ is a finite connected dag having nodes labelled
by objects of → and edges having a unique colour and labelled by steps of → such that the
label of the source (target) of an edge is the source (target) of its label, satisfying: (i) the
dag is the union of its tiles, where a tile is a red–blue (blue–green, green–red) tetragonal cycle

23

Residuation = Skolemised Confluence V. van Oostrom

←+ · ← · → ·→+ such that interior nodes of its red (blue) valley path don’t have blue (red)
in-edges, (ii) a node has at most 1 in-edge and at most 1 out-edge of a given colour; (iii) there
are no paths having edges of all 3 colours; (iv) every→·→ (consecutive edges of distinct colours)
belongs to some tile; and (v) the source of the edges of a local peak ← · → (edges of distinct
colours) not belonging to a tile, has an in-edge of the 3rd colour (here green).

A bed-dag is a bed if nodes are elements of R3 and a red (blue, green) edge is a pair of nodes
such that only its 1st (2nd, 3rd) coordinates differ, with the target greater than the source.

The boundary of a dag is its subgraph of edges belonging to exactly one tile. A bricklaying
step ⇛ replaces a bed-dag L by another R, fresh except for having the same hexagonal cycle
←+ · →+ · ←+ · →+ · ←+ · →+ as boundary, where L is the union of 3 tiles pairwise sharing
only one peak edge, a redex, and R is without nodes of out-degree 3, a 3-valley ; see Fig. 5 left.

We designed bed-dags such that they are preserved by ⇛, and beds such that for any node of
out-degree 3, its 3 peaks lie in orthogonal planes, giving a 3-peak having the valleys as boundary.

Definition 8 (bricklaying). Assuming local 3-confluence for a (total) residuation | on steps,
proceed in III phases: (I) We reify4 the empty reduction as the empty step ε, update residuation
by setting ϕ | ψ to the step ε if it was the empty reduction, and set ε | ϕ := ε and ϕ | ε := ϕ;
(II) We represent a 3-peak as a flatbed, a bed that need not satisfy condition (v), in the
way illustrated in Fig. 6, and associate to each tiling step ϕ−1 · ψ ⇒ (ψ | ϕ) · (ϕ | ψ)−1 a flat
bricklaying step replacing a subgraph with boundary ϕ · ε · ϕ−1 · ψ · ε−1 · ψ−1 by a tile with
boundary (ψ | ϕ)−1 · ε · ϕ−1 · ψ · ε−1 · (ϕ | ψ), scaling it to make it fit in the bed. For reductions
ϕ, ψ then ϕ−1 · ψ ⇒⇒ (ψ | ϕ) · (ϕ | ψ) iff flat bricklaying terminates for the 3-peak ϕ, ψ, ε (where
ε is the empty reduction, not the empty step) in a bed, with inside it a 3-valley with tetragonal
boundary (ψ | ϕ)−1 · ϕ−1 · ψ · (ϕ | ψ). This allows to produce 3-valleys for each of the 6 faces
F,G,H, F ′, G′, H ′ of a bricklaying step ⇛ for 3-peak of steps ϕ, ψ, χ as in Fig. 5; (III) A lhs
L for local 3-peak ϕ, ψ, χ is the bed obtained by pasting F,G,H along theses 3 shared steps.5

The rhs R is the 3-valley obtained by pasting the red–blue F ′, blue–green G′ and green–red H ′

3-valleys along their ‘shared’ reductions; caveat : in general these are not shared due to having
reified empty steps, as illustrated for the reduction ‘shared’ between F ′ and H ′ on the right in
Fig. 6. We overcome this by a process we dub buttering, refining both 3-valleys by inserting εs
in tiles, and rescaling the opposite reductions (with a knock-on effect through the bed).6

a

b

c

d

ϕ

χ

c

cb

a

c

cζ

ϕ

ξ

ψ

a

b

c

d

ϕ

ψ

ϕψ

a
χ

ζ ξ

1 or 2 empty steps??

⇛

F ′

F

H
H ′

Figure 6: Embedding a conversion as a flatbed using tiles with empty (dashed) steps (left), and
reifying empty reductions in a local 3-confluence may break it (right)

Just like tiling, bricklaying has random descent if ⇛ is deterministic (if the three faces of a
3-peak determine the rhs), hence the bricklaying strategy implicit in the proof of Thm. 5 (Fig. 4

4An idea due to Klop to keep confluence diagrams rectangular in drawings. It was given a description but
not a definition in [10]. Our buttering keeps 3-confluence diagrams rectangular in drawings; cf. Fig. 6 right.

5Caveat : we get different Ls for different local confluences with empty steps for the 3 local peaks of steps.
6This is possible; in the example we insert 1 ε in H′; as the opposite side is 1 (ε-)step no rescaling is needed.

24

Residuation = Skolemised Confluence V. van Oostrom

left) being terminating in the decreasing case, then entails termination of bricklaying, yielding
a residuation satisfying the cube law per construction; residuals can be read off from the bed.

Conclusion We have identified residuation as skolemised confluence, and studied computing
residuation via tiling of local peaks in 2D yielding valleys, and via bricklaying of local bricks
in 3D yielding 3-valleys, giving confluence respectively 3-confluence (such that Lévy’s cube law
holds). We introduced 3-decreasingness as a way to show 3-confluence by means of local bricks.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[2] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, 1984.

[3] A. Church and J.B. Rosser. Some properties of conversion. Transactions of the American Mathe-
matical Society, 39:472–482, 1936. https://doi.org/10.1090/S0002-9947-1936-1501858-0.

[4] P. Dehornoy and alii. Foundations of Garside Theory. European Mathematical Society, 2015.

[5] J. Endrullis, J.W. Klop, and R. Overbeek. Decreasing diagrams with two labels are complete for
confluence of countable systems. In 3rd FSCD, volume 108 of LIPIcs, pages 14:1–14:15, 2018.
https://doi.org/10.4230/LIPIcs.FSCD.2018.14.

[6] A. Geser, A. Middeldorp, E. Ohlebusch, and H. Zantema. Relative undecidability in term
rewriting: II. the confluence hierarchy. Information and Computation, 178(1):132–148, 2002.
https://doi.org/10.1006/inco.2002.3150.

[7] G. Gonthier. Formal proof – the four-color theorem. Notices of the American Mathematical Society,
55(11):1382–1394, 2008. https://www.ams.org/journals/notices/200811/tx081101382p.pdf.

[8] N. Hirokawa, J. Nagele, V. van Oostrom, and M. Oyamaguchi. Confluence by critical pair analysis
revisited. In CADE 27, volume 11716 of LNCS, pages 319–336. Springer, 2019. https://doi.

org/10.1007/978-3-030-29436-6_19.

[9] G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems, Part I + II. In Compu-
tational Logic – Essays in Honor of Alan Robinson, pages 395–443. MIT Press, 1991.

[10] J.W. Klop. Combinatory Reduction Systems. PhD thesis, Rijksuniversiteit Utrecht, 1980.

[11] J.-J. Lévy. Réductions correctes et optimales dans le λ-calcul. Thèse de doctorat d’état, Université
Paris VII, 1978.

[12] M.H.A. Newman. On theories with a combinatorial definition of “equivalence”. Annals of Math-
ematics, 43:223–243, 1942. https://doi.org/10.2307/1968867.

[13] V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD the-
sis, Vrije Universiteit Amsterdam, 1994. https://research.vu.nl/en/publications/

confluence-for-abstract-and-higher-order-rewriting.

[14] V. van Oostrom. Random descent. In RTA, volume 4533 of LNCS, pages 314–328. Springer, 2007.
https://doi.org/10.1007/978-3-540-73449-9_24.

[15] V. van Oostrom. Confluence by decreasing diagrams; converted. In RTA, volume 5117 of LNCS,
pages 306–320. Springer, 2008. https://doi.org/10.1007/978-3-540-70590-1_21.

[16] V. van Oostrom. Some symmetries of commutation diamonds. In 9th IWC, pages 1–7, 2020.
http://iwc2020.cic.unb.br/iwc2020_proceedings.pdf.

[17] V. van Oostrom and Y. Toyama. Normalisation by Random Descent. In 1st FSCD, volume 52 of
LIPIcs, pages 32:1–32:18, 2016. https://doi.org/10.4230/LIPIcs.FSCD.2016.32.

[18] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

[19] H. Zantema and V. van Oostrom. The paint pot problem and common multiples in monoids.
Applicable Algebra in Engineering, Communication and Computing, page 23, 2023. https://doi.
org/10.1007/s00200-023-00613-6.

25

https://doi.org/10.1090/S0002-9947-1936-1501858-0
https://doi.org/10.4230/LIPIcs.FSCD.2018.14
https://doi.org/10.1006/inco.2002.3150
https://www.ams.org/journals/notices/200811/tx081101382p.pdf
https://doi.org/10.1007/978-3-030-29436-6_19
https://doi.org/10.1007/978-3-030-29436-6_19
https://doi.org/10.2307/1968867
https://research.vu.nl/en/publications/confluence-for-abstract-and-higher-order-rewriting
https://research.vu.nl/en/publications/confluence-for-abstract-and-higher-order-rewriting
https://doi.org/10.1007/978-3-540-73449-9_24
https://doi.org/10.1007/978-3-540-70590-1_21
http://iwc2020.cic.unb.br/iwc2020_proceedings.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2016.32
https://doi.org/10.1007/s00200-023-00613-6
https://doi.org/10.1007/s00200-023-00613-6

Confluence of a Computational Lambda Calculus for

Higher-Order Relational Queries

Claudio Sacerdoti Coen and Riccardo Treglia

Università di Bologna, Bologna, Italy
claudio.sacerdoticoen@unibo.it

riccardo.treglia@unibo.it

Abstract

We study the operational semantics of an untyped computational lambda-calculus
whose normal forms represent queries on databases. The calculus extends the compu-
tational core with additional operations and rewriting rules whose effect is to turn the
monadic type of computations into a multiset monad that capture tables. Moreover, we
introduce comonadic constructs and additional rewriting rules to be able to form tables of
tables. Proving confluence becomes tricky: we succeed exploiting decreasing diagrams.

1 Introduction to the Calculus: Syntax and Reduction
Relation

The second author et al. have introduced and studied in [dLT20, FGdLT22] the computational
core λ©, a λ-calculus inspired by Moggi’s computational one [Mog89, Mog91]. The calculus
differentiates between values and computations, the latter obtained via return/bind constructs
for a generic monad. The strong operational semantics is obtained simply orienting the monadic
laws, and confluence was proved among other properties.

In this work, we extend λ© with specific additional operations and rewriting rules over com-
putations that turn the generic monad into a multiset monad: the 0-ary operation ∅ represents
the empty multiset, ⊎ the union of multisets, and the monadic return, denoted by [V], is now
interpreted as forming a singleton. The rewriting rules partially capture the algebraicity of the
operations in the sense of Plotking and Power [PP02, PP03] by letting the operators commute
with those rewriting contexts that are built from bind operators, only. Because in λ©, contrary
to Moggi’s computational λ-calculus, values and computations are rigidly split, the extension
obtained so far does not allow formation of multisets of multisets, because multisets are not
values. To overcome the issue, we add two more co-monadic constructs to reflect computa-
tions into values, following ideas by [Fil94]. These constructs are the thunk/force constructs
of Levy’s call-by-push-value [Lev99]; however, our calculus is strong, i.e. it allows reduction
inside values as well. Finally, we introduce an equational theory over computations to capture
associativity and commutativity of ⊎ and idempotency of ∅: this is the minimal theory that
turns the calculus into a confluent one.

The exact choice of rewriting and equational rules that we pick seems rather arbitrary at
first: the empty set is not the neutral element of ⊎ and the monadic operations are not forced to
be completely algebraic (e.g. ⊎ does not commute with contexts that include thunks or force).
It is to the (untyped) NRCλ calculus [RC20] as λ© is to the (untyped) λ-calculus, and indeed
we are introducing it with the intent of studying semantic properties of the NRCλ-calculus
via intersection types, trying to scale what the second author already did for λ©. The NRCλ
calculus is an example of nested, higher-order relational calculus that provides a principled
foundation for integrating database queries into programming languages. In NRCλ, a database

26

Confluence of a Comp. λ-Calculus for HO Relational Queries Sacerdoti Coen, Treglia

table is represented by the multiset of its rows, where each row is just a value (NRCλ has
tuples). The main properties of the calculus are that it is confluent and strongly normalizing
and, moreover, some normal forms can be directly interpreted as SQL queries (those such that
the types of the free variables and of the result are just tables of base types and not tables of
tables). In particular, the set of rewriting and equational rules that our calculus inherits from
the NRCλ-calculus is the minimal set that grants the previous properties.

Because of the important application to database, from now on we call our extension of the
λ© calculus the λSQL calculus.

Contributions The first contribution of the work is the design of the λSQL calculus, which
goes beyond the mere effort to fit the NRCλ into a well-assessed monadic frame. Indeed, this
can be considered as an experiment of extending λ© with algebraic operators (other cases are
[dT21, AKR23]), but here it immediately highlights, for example, the need to introduce other
kind of constructs, such as the comonadic unit, that could be added to λ© independently of the
algebraic operators.

The second contribution is the proof of a fundamental property of the calculus: confluence.
The proof is labour-intensive because the rewriting rules associated to algebraicity of the op-
erators turn them into control operators: each operator can capture its context and then erase
or duplicate it, and many critical pairs arise. Moreover, there is also the issue of the interplay
between the equational theory and the rewriting theory. Technically, we make strong use of
von Oostrom’s decreasing diagram technique [vO94], the most difficult point of which is to
find the order relation between the labels of the calculus reduction rule. This will be done by
considering orthogonal and nested closures of certain reduction rules, inspired by the work in
[ADJL17], postponing in a final step the commutation with respect to the union operator.

Long-term perspectives Our long-term goal is to extract from the confuence proof based on
decreasing diagrams an order over reduction rules to design a well-behaved normalizing strategy.
We will then define an appropriate intersection type system based on tight multi-types [AGK20]
to capture quantitatively the set of terminating queries according to that strategy, the length
of their reduction and the size of the normal forms, i.e. the size of the computed SQL queries.
Ultimately we want to capture even more quantitative information over the queries itself.

Syntax and Reduction The syntax of the untyped computational SQL λ-calculus, shortly
λSQL, and its reduction relation are reported below:

Definition 1.1 (Term syntax).

Val : V,W ::= x | λx.M | ⟨⟨M⟩⟩
Com : M,N ::= [V] |M ⋆ V |M ⊎M | ∅ | !V

Like in λ©, terms are of either sorts Val and Com, representing values and computations,
respectively. Variables x, abstractions λx.M — where x is bound inM — and the constructors
[V] and M ⋆ V , written return V and M >>= V in Haskell-like syntax, respectively, form
the syntax of λ©, which is agnostic on the interpretation of computations. In λSQL, instead,
computations are meant to be understood as tables, i.e. multisets of values, and therefore [V]
is interpreted as the singleton whose only element is V and ⋆ as the bind operator of the list
monad. The binary and 0-ary operators ⊎ and ∅ are additionally used to construct tables. The
pair of constructs ⟨⟨·⟩⟩ and ! are used to reflect computations into labels, allowing to form tables
of (reflected) tables. Note that ⟨⟨·⟩⟩ can be understood as the unit of a comonad. Terms are
identified up to renaming of bound variables so that the capture avoiding substitutionM{V/x}
is always well defined; FV (M) denotes the set of free variables in M . Finally, like in λ©,
application among computations can be encoded by MN ≡M ⋆ (λz. N ⋆ z), where z is fresh.

27

Confluence of a Comp. λ-Calculus for HO Relational Queries Sacerdoti Coen, Treglia

Wrapping up, the syntax can be condensed in the motto:

λSQL ≈ λ© + operations over tables + monadic reification/reflection

with the latter extension being orthogonal to the second one.
We are now in place to introduce the λSQL reduction relation, later closed under contexts:

Definition 1.2 (Reduction). The reduction relation is the union of the following binary rela-
tions over Com:

βc) [V] ⋆ λx.M 7→βc M{V/x}
σ) (L ⋆ λx.M) ⋆ λy.N 7→σ L ⋆ λx.(M ⋆ λy.N) for x ̸∈ fv(N)

⊎1) (M ⊎N) ⋆ λx.P 7→⊎1
(M ⋆ λx.P) ⊎ (N ⋆ λx.P)

⊎2) M ⋆ λx.(N ⊎ P) 7→⊎2
(M ⋆ λx.N) ⊎ (M ⋆ λx.P)

∅1) ∅ ⋆ λx.M 7→∅1
∅

∅2) M ⋆ λx.∅ 7→∅2
∅

!) !⟨⟨M⟩⟩ 7→! M

The first two rules, taken from λ©, are oriented monadic equations. The next four rules
capture algebraicity of the ⊎ operator, but only w.r.t. contexts made of ⋆ only (e.g. there is no
rule (M ⊎N)⊎P 7→ (M ⊎P)⊎ (N ⊎P) because that would be unsound for tables). The latter
rule is the usual rule for the thunk/force redex in call-by-push-value.

The reduction −→λSQL
(when it is clear from the context we omit the subscript) is the con-

textual closure of λSQL under computational contexts, where such contexts are mutually defined
with values contexts as follows:

V ::= ⟨·Val⟩ | λx.C | ⟨⟨C⟩⟩ Value Contexts

C ::= ⟨·Com⟩ | [V] | C ⋆ V |M ⋆ V | C ⊎M |M ⊎ C | !V Computation Contexts

Notice that the hole of each kind of context has to be filled in with a proper kind of term.
We equip the calculus with a sound, but not complete, equational theory for multisets, taken

from [RC20].

Definition 1.3 (Equational theory E).

Comm) M ⊎N = N ⊎M
Empty) ∅ ⊎ ∅ = ∅

2 Route to Confluence

We modularize the proof of confluence by first showing that the equational part can be post-
poned.

Getting rid of the equational theory. A classic tool to modularize a proof of confluence
is Hindley-Rosen lemma, stating that the union of confluent reductions is itself confluent if
they all commute with each other. Let us first define what commutation between a reduction
relation and an equational theory means, and then state that result properly.

Definition 2.1. Given a reduction relation −→ and an equational theory =E, we say that −→
commutes over =E if for all M,N,L such that M =E N −→ L, there exists P such that
M −→ P =E L.

28

Confluence of a Comp. λ-Calculus for HO Relational Queries Sacerdoti Coen, Treglia

Lemma 2.2 (Hindley-Rosen). Let R1 and R2 be relations on the set A. If R1 and R2 are
confluent and commute with each other, then R1 ∪R2 is confluent.

We will exploit that to focus just on the reduction relation while proving confluence.

Lemma 2.3. =E commutes with −→.

Hence, by Lemma 2.3 one needs just the confluence of −→ to assert the confluence of −→
modulo E.

Decreasing diagram. Now that is possible to omit the equational theory induced by Defi-
nition 1.3, we need to prove the commutation of all the reduction rules, and in this intent we
use decreasing diagrams by van Oostrom [vO94, vO08]. This is a powerful and general tool
to establish commutation properties, which reduces the problem of showing commutation to a
local test; in exchange of localization, the diagrams need to be decreasing with respect to some
labelling.

Definition 2.4 (Decreasing, [vO94]). An rewriting relation R is locally decreasing if there
exist a presentation (R, {−→i}i∈I) of R and a well-founded strict order > on I such that:

←
i
·→
j
⊆ ∗←→∨i

· =−→
j
· ∗←→∨{ij} ·

=←−
i
· ∗←→∨j

,

where ∨Ī = {i ∈ I | ∃k ∈ Ī . k > i}, ∨i abbreviates ∨{i}, and ∗−→ (resp.
∗←→) and

=−→ (resp.
=←→) are the transitive and reflexive closures of the relation −→ (resp. ↔).

Let us give a hint the above definition. The property of decreasiness is stated for a relations,
seen as a family of labelled binary relations. Such labels are equipped with a well-founded, strict,
order such that every peak can be rejoined in a particular way, regulated by that specific order
on labels.

The following theorem, due to van Oostrom, states that decreasiness implies confluence.

Theorem 2.5 (van Oostrom [vO94, vO08]). A Every locally decreasing rewriting relation R is
confluent.

Which order? Now the point is to find a proper labelling and a strict order on that labelling
that satisfies the property of decreasiness. Let’s start with harmless reductions, involving rules
of union and empty.

(M1 ⊎M2) ⋆ λx.∅ ⊎1

- (M1 ⋆ λx.∅) ⊎ (M2 ⋆ λx.∅)

∅ �

2

∅2

∅
2

-

∅ ⋆ λx.(M1 ⊎M2) ⊎2

- (∅ ⋆ λx.M1) ⊎ (∅ ⋆ λx.M2)

∅ �

2

∅1

∅
1

-

By the above diagrams it seems clear that rules concerning the empty table should be top
elements of the labelling we are searching for.

When it comes to comparing ⊎1 vs. σ, the situation is a bit tricker because ⊎1 only quasi-
commutes over σ. The following diagrams shows that ⊎1 must be made greater than σ.

((L1 ⊎ L2) ⋆ λx.M) ⋆ λy.N
σ

- (L1 ⊎ L2) ⋆ λx.(M ⋆ λy.N)

M̄1

⊎1

?

⊎1

- · 2

σ
- M̄2

⊎1

?

29

Confluence of a Comp. λ-Calculus for HO Relational Queries Sacerdoti Coen, Treglia

where M̄1 = ((L1⋆λx.M)⊎(L2⋆λx.M))⋆λy.N), M̄2 = (L1⋆λx.(M⋆λy.N))⊎(L2⋆λx.(M⋆λy.N))
The case for βc vs ⊎2, however, shows the need for a non-trivial approach, since depending

in which context the rules are applied, we need either βc > ⊎2 or βc < ⊎2. Indeed,

[V] ⋆ λx.(N ⊎ P)
βc - (N ⊎ P){V/x}

([V] ⋆ λx.N) ⊎ ([V] ⋆ λx.P)

⊎2

? βc

2
- N{V/x} ⊎ P{V/x}

wwwwwwwww

. . . but . . .

V1 = λx.(M ⋆ λy.(N1 ⊎ N2))
V2 = λx.((M ⋆ λy.N1) ⊎ (M ⋆ λy.N2))

[V1] ⋆ λz.([z] ⋆ z)
⊎2- [V2] ⋆ λz.([z] ⋆ z)

[V1] ⋆ V1

βc

? ⊎2

2
- [V2] ⋆ V2

βc

?

Generalized version of unions and Multi-reduction. Before stating the main result we
have to introduce two new notion of reduction that will lead to a right labelling order to prove
the decreasiness. The first one is a generalized version of rules ⊎1 and ⊎2, taking into account
not just union symbols in the scope of the rule one by one, but all together.

Definition 2.6 (Generalized union step). Let us define as generalized ⊎1 and ⊎2 steps, notation
Gen⊎1 and Gen⊎2, as follows

Gen⊎1) (. . . (M1 ⊎ M2) ⊎ . . . ⊎ Mn) ⋆ λx.N 7→Gen⊎1
(M ⋆ λx.N) ⊎ (M2 ⋆ λx.N) ⊎ . . . ⊎ (Mn ⋆ λx.N)

Gen⊎2) M ⋆ λx.(. . . (N1 ⊎ N2) ⊎ . . . ⊎ Nn) 7→Gen⊎2
(M ⋆ λx.N1) ⊎ (M ⋆ λx.N2) ⊎ . . . ⊎ (M ⋆ λx.Nn)

Second, the confluence proof we are going to sketch avoids the issue with βc vs. ⊎2 reported
above by considering multiple reductions. Roughly speaking, this means that we consider a
labelling that comprehends reduction rules that can perform simultaneously in many ’part’ of
the term, called formally positions. For a fair formalization of these basic notions of rewriting
theory, please see, e.g., [BN98].

A parallel rewrite step is a sequence of reductions at a set P of parallel positions,
ensuring that the result does not depend upon a particular sequentialization of P . Given a
reduction step γ we define its parallel version as Parγ.

We are now ready to state our main result:

Theorem 2.7 (Confluence). λSQL is confluent.

Proof sketch. 1. All reduction rules strongly commute with !: proved by tedious inspection
of all cases.

2. Under the following order for parallel rewriting steps, all remaining rules are decreasing
as well: also proved by tedious inspection of all cases.

Parβc > Parσ > ParGen⊎2 > ParGen⊎2 > ∅1 > ∅2
The diagrams for the cases Par⊎1 vs Par⊎2 and Par⊎2 vs ∅1 only hold up to E.
E.g., ∅ ∅1

← ∅ ⋆ λx.M ⊎N −→⊎2
−→2

∅1
∅ ⊎ ∅.

3. Confluence is obtained combining the previous points with Lemma 2.3 and Theorem 2.5,
following [ADJL17].

30

Confluence of a Comp. λ-Calculus for HO Relational Queries Sacerdoti Coen, Treglia

References

[ADJL17] Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, and Jiaxiang Liu. Untyped Confluence
In Dependent Type Theories. working paper or preprint, April 2017.

[AGK20] Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and
split bounds, fully developed. J. Funct. Program., 30:e14, 2020.

[AKR23] Sandra Alves, Delia Kesner, and Miguel Ramos. Quantitative global memory.
arXiv:2303.08940, 2023.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University
Press, 1998.

[dLT20] U. de’ Liguoro and R. Treglia. The untyped computational λ-calculus and its intersection
type discipline. Theor. Comput. Sci., 846:141–159, 2020.

[dT21] Ugo de’Liguoro and Riccardo Treglia. Intersection types for a λ-calculus with global store.
In Niccolò Veltri, Nick Benton, and Silvia Ghilezan, editors, PPDP 2021: 23rd Interna-
tional Symposium on Principles and Practice of Declarative Programming, Tallinn, Esto-
nia, September 6-8, 2021, pages 5:1–5:11. ACM, 2021.

[FGdLT22] Claudia Faggian, Giulio Guerrieri, Ugo de’ Liguoro, and Riccardo Treglia. On reduction and
normalization in the computational core. Mathematical Structures in Computer Science,
32(7):934–981, 2022.

[Fil94] A. Filinski. Representing monads. In Conference Record of POPL’94: 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 446–457.
ACM Press, 1994.

[Lev99] Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Typed Lambda Calculi
and Applications, 4th International Conference (TLCA’99), volume 1581 of Lecture Notes
in Computer Science, pages 228–242, 1999.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth An-
nual Symposium on Logic in Computer Science (LICS ’89), pages 14–23. IEEE Computer
Society, 1989.

[Mog91] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.

[PP02] G. D. Plotkin and J. Power. Notions of computation determine monads. In FOSSACS
2002, volume 2303 of Lecture Notes in Computer Science, pages 342–356. Springer, 2002.

[PP03] G. D. Plotkin and J. Power. Algebraic operations and generic effects. Appl. Categorical
Struct., 11(1):69–94, 2003.

[RC20] Wilmer Ricciotti and James Cheney. Strongly normalizing higher-order relational queries.
In 5th International Conference on Formal Structures for Computation and Deduction,
FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference), pages 28:1–28:22,
2020.

[Ter03] Terese. Term rewriting systems, volume 55 of Cambridge tracts in theoretical computer
science. Cambridge University Press, 2003.

[vO94] Vincent van Oostrom. Confluence by decreasing diagrams. Theor. Comput. Sci.,
126(2):259–280, 1994.

[vO08] Vincent van Oostrom. Confluence by decreasing diagrams converted. In Rewriting Tech-
niques and Applications, 19th International Conference, RTA 2008,, volume 5117 of Lecture
Notes in Computer Science, pages 306–320. Springer, 2008.

31

A New Format for Rewrite Systems∗

Takahito Aoto1, Nao Hirokawa2, Dohan Kim3, Misaki Kojima4, Aart
Middeldorp3, Fabian Mitterwallner3, Naoki Nishida4, Teppei Saito2, Jonas

Schöpf3, Kiraku Shintani2, René Thiemann3, and Akihisa Yamada5

1 Faculty of Engineering, Niigata University, Japan
2 School of Information Science, JAIST, Japan

3 Department of Computer Science, University of Innsbruck, Austria
4 Department of Computing and Software Systems, Nagoya University, Japan
5 National Institute of Advanced Industrial Science and Technology, Japan

Abstract

We propose a new format for a variety of rewrite systems, to replace the current COPS
format used in the Confluence Competition. We include a proposal for logically constrained
rewrite system, to prepare for a future competition category.

1 Introduction

The Confluence Competition (CoCo) [5]1 is an annual competition in which software tools try
to solve confluence-related problems for a variety of rewrite formalisms. Problems in CoCo
are selected from COPS [3],2 an online database for confluence and related properties in term
rewriting.

In the basic COPS format the rewrite rules of the problem at hand are specified and the
variables are declared, but the function symbols are left implicit. This design decision goes
back to the Termination and Complexity Competition (termCOMP) [1]3 and is based on the
assumption that the property that needs to be (dis)proved is not affected by additional function
symbols. This is true for most CoCo and termCOMP categories, but not for all. For instance,
ground-confluence is well-known not to be preserved under signature extension. Since the
corresponding GCR category employs the many-sorted COPS format, in which every function
symbol is specified using a sort declaration, this causes no problem. Other properties that are
known not to be closed under signature extension include NFP and UNR [4]. Also, termination
under outermost strategies (corresponding to the termCOMP category TRS Outermost) is not
preserved under signature extension [2]. For the corresponding categories in CoCo, besides
the basic format, problems may be specified in the extended COPS format, which allows the
declaration of additional function symbols.

We propose a change in the COPS format in which function symbols that can be used
to construct terms must be listed, assuming that we have infinitely many variables (of any
type) at our disposal, which is the usual convention in the term rewriting literature. In this
paper we propose new formats for term rewrite systems (TRSs), conditional term rewrite sys-
tems (CTRSs), context-sensitive term rewrite systems (CSTRSs), a combination of the latter
two (CSCTRSs), many-sorted term rewrite systems (MSTRSs), and logically constrained term
rewrite systems (LCTRSs). For the latter, no previous format is known. We also describe how

∗This research was funded by the Austrian Science Fund (FWF) project I5943 and JSPS-FWF
JPJSBP120222001.

1http://project-coco.uibk.ac.at/
2https://cops.uibk.ac.at/
3http://termination-portal.org/wiki/Termination_Competition

32

http://project-coco.uibk.ac.at/
https://cops.uibk.ac.at/
http://termination-portal.org/wiki/Termination_Competition

A New Format for Rewrite Systems Aoto et al.

multiple TRSs are represented. The new format specifies rewrite systems only, thus strategies
like innermost and outermost are not part of the format. We take the stance that these should
be part of competition categories, to avoid unnecessary duplication in databases.

2 Format

The following code represents the TRS {F(x, x) → A,G(x) → F(x,G(x)),C → G(C)} in our
new syntax:

; @author Takahito Aoto

; @author Junichi Yoshida

; @author Yoshihito Toyama

; @doi 10.1145/322217.322230

; p. 813, attributed to Barendregt

(format TRS)

(fun F 2)

(fun A 0)

(fun G 1)

(fun C 0)

(rule (F x x) A)

(rule (G x) (F x (G x)))

(rule C (G C))

The new format adopts a Lisp/Scheme-like syntax. All specifications are written in the form of
S-expressions. A semicolon (;) indicates a line comment. The text between a semicolon and the
end of the line is regarded as a comment. A line starting with ; @ indicates meta-information
like information about authors and references.

All formats have an optional meta-info header and a content part. The meta-info part
consists of line comments following a specific format, which are used to embed metadata in a
file. They resemble key-value pairs, where the key is some arbitrary string not containing white
space and the value is a string not containing newlines. In a meta-info line the key is written
using a leading @ symbol, separated from the value by a single space. For example in the line

; @author John Smith

the key author is followed by the value John Smith. Such metadata is used to attribute the
problem to one or more authors or contributors, or cite the literature where the system first
appeared. It is also easily extensible for future uses, for example to indicate that a specific
property (confluence, termination, . . .) is satisfied. The content part of the format represents
the rewrite system, and depends on the type of system represented. The following (extended)
BNF indicates the lexical and parsing rules for the common syntax of the new format:

identifier ::= [^ \t\r\n();:]+ term ::= identifier | (identifier term+)

space ::= [\t\r\n] comment ::= ; [\t]∗ (ϵ | [^@\n] [^\n]∗) \n
number ::= [0− 9]+ meta-info ::= ; @ [^\n]∗ \n

file ::= meta-info∗ content
content ::= TRS | CTRS | MSTRS | LCTRS | CSTRS | CSCTRS

Note that space and comment are ignored in the parsing rules. As illustrated by the introductory

33

A New Format for Rewrite Systems Aoto et al.

TRS CSTRS

CTRS

CSCTRS

MSTRS LCTRS

Figure 1: The formats ordered by inclusion.

example, function applications f(t1, . . . , tn), are written as (f t1 · · · tn), while variables and
constants are written without parentheses.

The relation between the formats is shown in Figure 1, where an arrow between formats
means the target of the arrow is an extension of the source of the arrow.

2.1 TRS Format

The syntax of the TRS format is specified as follows:

TRS ::= (format TRS) fun∗ rule∗
fun ::= (fun identifier number)

rule ::= (rule term term)

Function symbols are declared by (fun f n) together with their arities. Undeclared identifiers
are regarded as variables. The format does not exclude ill-formed TRSs such as {x → f(y)}.
Validation of specifications is beyond the scope of our proposal.

2.2 CTRS Format

The format for CTRSs reuses the parsing rules for fun and term, while the remaining rules look
as follows:

CTRS ::= (format CTRS cond-type) fun∗ rule∗
cond-type ::= oriented | join | semi-equational

rule ::= (rule term term cond∗)
cond ::= (= term term)

For instance, the one-rule oriented CTRS {f(x) → f(y) ⇐ g(x) ≈ z, g(z) ≈ h(y)} is specified
as follows:

(format CTRS oriented)

(fun f 1)

(fun g 1)

(fun h 1)

(rule (f x) (f y) (= (g x) z) (= (g z) (h y)))

34

A New Format for Rewrite Systems Aoto et al.

2.3 CSTRS format

To specify the replacement map, needed for context-sensitive rewriting, the fun parsing rule is
extended with an optional argument:

CSTRS ::= (format CSTRS) fun∗ rule∗
fun ::= (fun identifier number (:replacement-map (number∗))?)

and all other grammar rules are the same as in the TRS format. For example,

(fun f 3 :replacement-map (1 3))

indicates that the first and third argument positions of f are active. Declarations (fun f n) are
equivalent to (fun f n :replacement-map (1 · · · n)), so the full replacement map is default.

2.4 CSCTRS Format

To also allow conditional rules in context-sensitive TRSs the format below is the straightforward
extension of the CTRS and CSTRS formats:

CSCTRS ::= (format CSCTRS cond-type) fun∗ rule∗
cond-type ::= oriented | join | semi-equational

fun ::= (fun identifier number :replacement-map (number∗))

rule ::= (rule term term cond∗)
cond ::= (= term term)

2.5 MSTRS Format

The format for many-sorted TRSs adapts the TRS format as follows:

MSTRS ::= (format MSTRS) sort∗ fun∗ rule∗
sort ::= (sort identifier)

fun ::= (fun identifier type)

type ::= identifier | (-> identifier+ identifier)

rule ::= (rule term term)

For example, the {N, L}-sorted signature {nil : N, cons : N× L→ L} is represented as follows:

(sort N)

(sort L)

(fun nil L)

(fun cons (-> N L L))

We adopt arrow notation -> for function types, anticipating that a consistent notation will
be used in a new format for higher-order rewrite systems. Function declarations such as (fun
cons 2) are invalid in the MSTRS format. The sorts of variables used in many-sorted rewrite
rules must be inferred from the rules separately. So the following specification is valid in the
format.

35

A New Format for Rewrite Systems Aoto et al.

(format MSTRS)

(sort N)

(sort L)

(fun f (-> N N))

(fun g (-> L L))

(rule (f x) x)

(rule (g x) x)

Here x in the first rule has sort N whereas x in the second rules has sort L.

2.6 LCTRS Format

The format for logically constrained TRSs extends that of many-sorted TRSs:

LCTRS ::= (format LCTRS) smt-theory∗ smt-def∗ sort∗ fun∗ rule∗
smt-theory ::= (theory theory)

smt-def ::= (define-fun ...)

rule ::= (rule term term (:guard formula)? (:var vars)?)

vars ::= (var∗)
var ::= (identifier identifier)

The smt-theory declaration specifies the theory symbols and types of the LCTRS theory part.
This theory should be available in an off-the-shelf SMT solver. Sensible examples can be found
on the SMT-LIB webpage.4 Furthermore, smt-def must adhere to the define-fun command
of SMT-LIB, and formula must be an SMT-LIB formula of the corresponding theory. Since
SMT-LIB also adopts a syntax based on S-expressions, the lexical and parsing rules remain
consistent. The optional sort declaration (:var vars) is mandatory in the case that sorts of
variables cannot be inferred. For example, assuming the theory Ints, the variables x and y

in the rule (rule a b :guard (not (= x y))) can be of sort Bool or Int. An example of an
LCTRS in the new format is given below:

(format LCTRS)

(theory Ints)

(define-fun isEven ((x Int)) Bool (= (mod x 2) 0))

(sort NList)

(fun build (-> Int NList NList)) (fun nats (-> NList))

(fun cons (-> Int NList NList)) (fun nil (-> NList))

(rule nats (build 0 nil))

(rule (build n xs) (build (+ n 1) (cons n xs))

:guard (and (isEven n) (>= n 0)))

(rule (build n xs) (build (+ n 1) xs)

:guard (and (not (isEven n)) (>= n 0)) :var ((n Int) (xs NList)))

2.7 Multiple Rewrite Systems

Properties like relative termination and commutation rely on two rewrite systems over a com-
mon signature. To represent multiple rewrite systems, we use :number n in the format speci-
fication, where n > 1 specifies the number of rewrite systems. Rewrite rules have an optional

4https://smtlib.cs.uiowa.edu/theories.shtml

36

https://smtlib.cs.uiowa.edu/theories.shtml

A New Format for Rewrite Systems Aoto et al.

argument :index i where 1 ⩽ i ⩽ n specifies that the rule belongs to the i-th rewrite system.
If the argument is not given, then i = 1. We give an example:

(format TRS :number 2)

(fun f 1)

(fun h 2)

(fun a 0)

(fun b 0)

(rule a (f b))

(rule (f a) b :index 1)

(rule (h a a) b :index 2)

(rule (f b) b :index 2)

This example specifies {a → f(b), f(a) → b} as the first and {h(a, a) → b, f(b) → b} as the
second TRS over the common signature {a : 0, b : 0, f : 1, h : 2}.

3 Future Work

We are planning to adopt the new format in CoCo from 2024. Before that, COPS will be
renewed. To support a smooth transition for tool developers, we will offer a tool5 that converts
problems in the old COPS formats to problems in the new syntax. Using the conversion tool,
tools that do not support the new format can participate in CoCo with no effort.

COPS is not the only database for rewrite systems. The Termination Problem Database
(TPDB) also hosts a large collection of rewrite systems. Having a unified database for rewrite
systems with a uniform syntax would be beneficial to the rewriting community. Designing a
new format for higher-order rewrite systems is future work.

Acknowledgements

We thank the anonymous reviewers for helpful comments.

References

[1] Jürgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann, and Akihisa Yamada. The
termination and complexity competition. In Tomáš Vojnar and Lijun Zhang, editors, Proceedings
of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, volume 11429 of Lecture Notes in Computer Science, pages 156–166, 2019.

[2] Bernhard Gramlich and Klaus Györgyfalvay. On modularity of termination properties of rewriting
under strategies. In Proceedings of the 12th International Workshop on Termination, pages 59–63,
2012.

[3] Nao Hirokawa, Julian Nagele, and Aart Middeldorp. Cops and CoCoWeb: Infrastructure for con-
fluence tools. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Proceedings of
the 9th International Joint Conference on Automated Reasoning, volume 10900 of Lecture Notes in
Artificial Intelligence, pages 346–353, 2018.

[4] Aart Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis, Vrije Universiteit,
Amsterdam, 1990.

[5] Aart Middeldorp, Julian Nagele, and Kiraku Shintani. CoCo 2019: Report on the Eighth Confluence
Competition. International Journal on Software Tools for Technology Transfer, 23(6):905–916, 2021.

5A preliminary version of the tool is available at https://ari-informatik.uibk.ac.at/tools/conversion/

37

https://ari-informatik.uibk.ac.at/tools/conversion/

The Z-property for left-linear term rewriting

via convective context-sensitive completeness

Vincent van Oostrom

oostrom@javakade.nl

Abstract

We present a method to derive the Z-property, hence confluence, of a first-order term
rewrite system T from completeness of an associated context-sensitive term rewrite system
T , µ with replacement map µ. We generalise earlier such results by only requiring left-
linearity of T and that T -critical peaks be T , µ-critical peaks. We introduce convective
replacement maps as a generalisation of the canonical maps known from the literature.

Background This note concerns a method to transfer confluence of a terminating context-
sensitive term rewrite system (CSR) T , µ to its underlying term rewrite system (TRS) T . The
direct inspiration was [3] in its contemplation of cofinal strategies [8], which raised the obvious
question whether the Z-property could play a rôle in the theory developed there (by Hirokawa
based on earlier work of Gramlich and Lucas), as it is known that the Z-property gives rise
to a (hyper-)cofinal bullet strategy [7] and entails confluence. We answer that question in the
affirmative by providing two assumptions allowing to establish the Z-property [7] for a TRS
and its layered bullet map •⊚, introduced here, that inside–out and layer-wise T , µ-normalises a
term, where the notion of layer is afforded by the replacement map µ of the CSR.

Preliminaries. For first-order term rewriting we base ourselves on [8], for context-sensitive
term rewriting on [1], and for the Z-property on [7]. We will only recapitulate some key notions
relevant to the developments here, referring the reader to the literature for more.

Context-sensitive term rewrite systems are term rewrite systems where contracting a redex
is restricted by a so-called replacement map mapping each function symbol in the signature
to its set of active argument positions. The notion of being active extends compositionally to
an occurrence of one term in another, via the latter occurring only in active arguments of the
function symbols occurring on its path from the root in the former. Given a replacement map,
context-sensitive rewriting only allows to contract active occurrences of redexes. Formally, for
µ a replacement map, a µ-redex is a redex at an active occurrence.

Given a context-sensitive term rewrite system (CSR) T , µ, with T a term rewrite system
(TRS) and a replacement map µ, we use → to denote the rewrite system induced by T , and
↪→ to denote the rewrite system induced by T , µ, contracting µ-redexes only. We will exploit
that, despite appearances, whether or not the occurrence1 ⟨t | C[]⟩ of one term t in another
s = C[t] is active, does not depend on the (whole) context C[], but only on the function symbols
occurring on its access path, the path from the root to the hole of the context.

The main technique. We are interested in transferring confluence of ↪→ to that of →. To
that end, we will work throughout under the following two assumptions.

(i) T critical peaks are T , µ critical peaks.

(ii) T , µ is a left-linear and complete (confluent and terminating) CSR.

1See [8, Sect. 2.1.1]. Below we will make do with specifying occurrences via paths in terms.

38

Z for ll-TRSs via convective complete CSRs V. van Oostrom

Remark 1. (1) Without assumption (i) one can’t expect to transfer confluence from ↪→ to
→ because context-sensitive rewriting in T , µ may then miss out on critical peaks of T . For
instance, consider the TRS T with rules a→ b and f(a)→ c where we used (as we will do
below) overlining2 to indicate that the argument of f is frozen, i.e. that µ(f) := ∅. Then ↪→ is
confluent, which may be shown by checking that the only ↪→-reducible terms are a and f(a),
and those are deterministic. In particular, we do not have f(a) ↪→ f(b) since a is frozen in f(a),
see [1, 6]. However, → is not confluent due to the non-joinable critical peak f(b)← f(a) ↪→ c.
(2) Neither assumption (i) nor assumption (ii) is necessary. That assumption (i) is not,
may be shown by adjoining c→ f(b) to T . That preserves confluence of ↪→, which may be
transferred to confluence of → using that the source of f(a) → f(b) is ↪→-reducible to its
target: f(a) ↪→ c ↪→ f(b), showing that the problematic critical peak is redundant, cf. [4].

To maximise the chance that the context-sensitive rewrite system ↪→ is terminating, i.e. to
maximise applicability of assumption (ii), it is best to minimise the number of active arguments
or, stated differently, to maximise the number of frozen arguments [1]. That is, letting µ map
each function symbol to the empty set ∅ would be best, but that may not be possible as
assumption (i) forces for every rule ℓ→ r that for every position p in ℓ such that ℓ|p unifies
with some left-hand side of a rule, p be active / not frozen. This motivates:

Definition 2 (convective). A replacement map µ is convective if µcnv ⊆ µ, i.e. if µ is not more
restrictive than µcnv , where µcnv is the most restrictive replacement map such that for every
rule ℓ→ r, for every position p in ℓ such that ℓ|p unifies with some left-hand side of a rule (i.e.
an overlap), i∈µcnv (ℓ(q)) for any qi ⪯ p (i.e. q is the position of a function symbol on the path
from the root to the overlap position p and i is its argument for which this holds.

Convectivity guarantees that if two left-hand sides occurring in a term have overlap the one
is active iff the other is, but nothing more. In particular, in a critical peak the inner redex
occurrence is active since the outer occurrence, at the root, is.

Example 3 (convective running example). Consider the CSR (suggested to us by Nao Hi-
rokawa) having rules and replacement map µcnv :

nats →1 from(0) tl(x : y) →4 y

inc(x : y) →2 s(x) : inc(y) from(x) →5 x : from(s(x))
hd(x : y) →3 x inc(tl(from(x))) →6 tl(inc(from(x)))

The only critical peak is between the fifth and sixth rules, for which convectivity entails we must
at least have 1 ∈ µ(inc), µ(tl). These two constraints give the convective replacement map µcnv .
For this CSR T , µ context-sensitive rewriting ↪→ trivially is terminating (checked by tools),
whereas ordinary term rewriting for T is non-terminating (still, confluence is checked by tools).

Remark 4. In the literature so-called canonical replacement maps, for which only the variables
may occur frozen in the left-hand sides of rewrite rules, play an important rôle. Formally, µ
is canonical if µcan ⊆ µ, i.e. if µ is not more restrictive than µcan , where µcan is defined
by i ∈ µcan(f) if for some position p and some rule ℓ→ r, we have ℓ(p) = f and ℓ(pi) is a
function symbol. Following-up on the preliminaries, the intuitive difference between canonical
and convective replacement maps is that a canonical replacement map requires all (non-variable)
positions in the redex-pattern to be active, whereas a convective replacement map requires this
only of the positions on an access path to where the redex-patern may be overlapped by another.

2Our overlining notation suggests that the overlined argument position is cut off from its context, i.e. frozen.

39

Z for ll-TRSs via convective complete CSRs V. van Oostrom

Example 5. In Ex. 3 canonicity requires we also have 1∈µcan(hd) due to the (first) argument
belonging to the pattern of the left-hand side of the third rule, illustrating µcnv ⊂ µcan here.

The idea of our terminology convective is to view a term as a fluid, and the paths from the root
of a left-hand side to the roots of overlapping left-hand sides as representing flows within the
fluid, with the flow enabling activation of the latter. A term is in ↪→-normal form iff there’s
no flow from the root of the term to any redex-pattern. It then makes some intuitive sense to
speak of its layer at depth 0 as being solid. Formally, the depth of an occurrence is the number
of frozen argument positions it is in on the path to the root, inducing a natural stratification
of terms into layers of symbols, subterms, and redexes occurring at a given depth.

Lemma 6. If t→ s then t• ↠ s•,3 where • maps a term to its ↪→-normal form, unique by (ii).

Proof of Lem. 6. We claim t q−→ s entails4 t• ↠ ŝ←←↩ s for some ŝ. From the claim we conclude
using ŝ↠ s• by assumption (ii) and ↪→ ⊆ →. We prove the claim by induction on t w.r.t. ←↩
well-founded (cf. [8, Def. A.1.5(vii)]) by assumption (ii), and by distinguishing cases on t q−→ s:

If t q−→ s decomposes as t ↪→ t′ q−→ s, we conclude by the IH for t′ q−→ s and t• = t′•.
Otherwise t q−→ s only contracts non-µ-redexes, occurring at depths at least 1 in t. By

assumption (i) those cannot have overlap with any redex-pattern at depth 0 in t, as that would
give rise to a critical peak of T that is not a critical peak of T , µ.

If t = t• we may trivially set ŝ := s. Otherwise, for some t′ there is a step t ↪→ t′ orthogonal
to t q−→ s, hence by the assumed left-linearity of T the steps commute. Because t ↪→ t′ is
not below (any redex-pattern in) t q−→ s, the residual of the former after the latter is again a
(single) ↪→-step, inducing a diagram of shape t ↪→ t′ q−→ s′ ←↩ s. By the IH for t′ q−→ s′ and
assumption (ii) we conclude to t• = t′• ↠ ŝ←←↩ s′ ←↩ s for some ŝ, as desired.

Assumption (ii) ensures ↪→ has the Z-property5 for bullet map • by [7, Lem. 11]. That bullet
map is extensive for ↪→, i.e. t ↪→→ t• [7, Definition 4]. We show → has the Z-property under
assumptions (i) and (ii) for some bullet map •⊚ based on •. To define •⊚ we use that any term
can be uniquely decomposed into its active layer at depth 0 w.r.t. µ (called maximal replacing
context MRCµ in [5]) and its frozen arguments at depth 1. Accordingly, we write C ⟨⃗t⟩ to denote
such a unique decomposition, where C is the active layer and t⃗ the vector of frozen arguments.

Definition 7. The layering •⊚ (of •) is inductively defined by C ⟨⃗t⟩•⊚ := C ⟨⃗t•⊚⟩•.

Lemma 8. C [⃗t•⊚]↠ C [⃗t]•⊚.

Proof. By induction and cases on C. The base cases C = 2 and C = x being trivial, suppose C

has shape f(C⃗) and decompose t⃗ accordingly. We conclude to C [⃗t•⊚] = f(
−−−→
C [⃗t•⊚])↠ f(

−−−→
C [⃗t]•⊚)↠

f(
−−→
C [⃗t])•⊚ = C [⃗t]•⊚ by, respectively, the decomposition of C [⃗t], the induction hypothesis for C⃗

and closure under contexts of→, the claim that g(s⃗•⊚)↠ g(s⃗)•⊚ for all g and s⃗, and by definition
of the decomposition again.

To prove the claim, first observe that g(s⃗•⊚) ↠ g(s⃗•⊚)• by extensivity of • and ↪→ ⊆ →.
Therefore, to conclude it suffices to show g(s⃗•⊚)• = g(s⃗)•⊚. To that end, let g(s⃗) uniquely

decompose as g(
−−→
D[u⃗]) with for i∈µ(g), Di⟨u⃗i⟩ the unique decomposition of si, and for i ̸∈µ(g),

3We employ Klop’s convention, cf. [8], to use an arrow with a double arrowhead to denote the reflexive–
transitive closure of the rewrite relation denoted by the arrow with a single arrowhead.

4We employ Huet’s convention, cf. [8], to use an arrow adorned with two vertical strokes to denote parallel
reduction, allowing to perform steps with respect to the unadorned reduction at a number of parallel positions.

5A rewrite system ↪→ has the Z-property [7] for a map • on its objects, if a ↪→ b entails b ↪→→ a• ↪→→ b•.

40

Z for ll-TRSs via convective complete CSRs V. van Oostrom

Di = 2 and u⃗i = si. Hence g(s⃗)•⊚ = g(
−−−→
D[u⃗•⊚])• per construction of the decomposition and by

definition of •⊚. To conclude to g(s⃗•⊚)• = g(s⃗)•⊚ = g(
−−−→
D[u⃗•⊚])• it then suffices to show that g(s⃗•⊚)

and g(
−−−→
D[u⃗•⊚]) are ↪→-convertible since ↪→ is complete by assumption (ii). Convertibility follows

from that for each active argument i ∈ µ(g) we have that si uniquely decomposes as Di⟨u⃗i⟩ so
that s•⊚i = Di⟨u⃗i •⊚⟩• hence s•⊚i and Di⟨u⃗i •⊚⟩ are ↪→-convertible and by i being active this extends

to the respective ith arguments of g(s⃗•⊚) and g(
−−−→
D[u⃗•⊚]), and from that for each frozen argument

i ̸∈ µ(g) we have by definition of Di and u⃗i that s
•⊚
i = Di[u⃗i

•⊚].

Theorem 9. → has the Z-property for •⊚.

Proof. We have to show that if ϕ : t → s is a TRS step, then there are reductions s ↠ t•⊚

and t•⊚ ↠ s•⊚, giving rise to the Z in [7, Figures 1 and 5]. This we prove by induction on the
decomposition C ⟨⃗t⟩ of the source t of ϕ and by cases on whether or not ϕ is a µ-step.

• if t ↪→ s, then by definition of •⊚ and extensivity of •⊚, there is a reduction t ↠ t•⊚ that
decomposes into a reduction γ :C ⟨⃗t⟩↠ C ⟨⃗t•⊚⟩ with steps at depth at least 1, followed by
a reduction δ : C ⟨⃗t•⊚⟩ ↪→→ C ⟨⃗t•⊚⟩• = t•⊚ with steps at depth 0. Since ϕ is a step at depth
0, assumption (i) yields it and its residuals (after any prefix of γ) are orthogonal to (the
corresponding suffix of) γ, giving rise by standard residual theory [8, Chapter 8] for the
left-linear TRS T , to a valley completing the peak between ϕ and γ that comprises a step
ϕ/γ : C ⟨⃗t•⊚⟩ ↪→ u and reduction γ/ϕ : s↠ u for some term u.

To conclude to s ↠ t•⊚ we compose γ/ϕ : s ↠ u with the ↪→-reduction (lifted to a →-
reduction using ↪→ ⊆ →) of its target u to ↪→-normal form, which is t•⊚ since t•⊚ =
C ⟨⃗t•⊚⟩• = u• by definition respectively ϕ/γ and completeness of ↪→.

To conclude to t•⊚ ↠ s•⊚, we claim that u has shape E[u⃗•⊚] and s has shape E[u⃗] for
some context E and vector of terms u⃗. Then, composing ϕ/γ : C ⟨⃗t•⊚⟩ ↪→ u with u =
E[u⃗•⊚]↠ E[u⃗]•⊚ = s•⊚ obtained by Lem. 8, yields C ⟨⃗t•⊚⟩↠ s•⊚. From this we conclude to
t•⊚ = C ⟨⃗t•⊚⟩• ↠ (s•⊚)• = s•⊚ by Lem. 6 and idempotence of •.
It remains to prove the claim that u has shape E[u⃗•⊚] and s has shape E[u⃗] for some
context E and vector of terms u⃗. The idea is that both C and ℓ are preserved under
non-µ-steps, so their join is so too, and we set E be the result of contracting ℓ in the join.
Formally, we construct E as follows. Let ς := let X = C[x⃗] inX (⃗t) be the cluster [4]
corresponding to the occurrence of the context C in t, and let ζ be the cluster of shape
let Y = ℓ in . . . corresponding to the occurrence in t of the left-hand side ℓ of the rule
ℓ→r contracted in the step ϕ : t ↪→ s. Their join ξ := ς⊔ζ has shape let Z = D[z⃗] inZ(u⃗)
for some context D and terms u⃗, by ς being a root cluster of ς having overlap with ζ.

Per construction of ξ and by left-linearity of T there is a step ψ from D[z⃗] contracting
the occurrence of ℓ such that ϕ is a substitution instance of ψ.6 We define E from the
target of ψ writing it uniquely as E[w⃗] for w⃗ comprising the replicated variables of z⃗, so
that ψ :D[z⃗] ↪→ E[w⃗]. We define u⃗ from the target s of ϕ : t ↪→ s, noting s can be written
as the unique substitution instance E[w⃗]υ = E[u⃗] of the target E[w⃗] of ψ, for substitution
υ mapping zi to ui such that ϕ = ψυ. Per construction, t = D[z⃗]υ and s = E[w⃗]υ = E[u⃗].

Finally, we must show that u = E[u⃗•⊚]. To that end, note that any ↪→-step ϕ′ of shape
ψσ for term substitution σ, is orthogonal to any non-µ-step χ having the same source,

6D could be described as being obtained by unifying the occurrence of the left-hand side ℓ with the context
C (both linear and renamed apart). E is then the result of contracting the ℓ-redex in D. We avoided such an
account here since D and E are not simply contexts, but linear terms; the names of the holes in E do matter.

41

Z for ll-TRSs via convective complete CSRs V. van Oostrom

as (the redex-pattern of) χ can neither have overlap with ς by χ being non-µ, nor have
overlap with ζ by assumption (i) using that ψ is at depth 0 and χ at depth at least 1,
so χ cannot have overlap with their join ς ⊔ ζ either. Thus, χ is of shape D[z⃗]τ for some
step-substitution7 τ , and χ/ϕ′ = E[w⃗]τ and ϕ′/χ = ψτ ′

with τ ′ the step-substitution such
that τ ′(zi) is the target of τ(zi), for all i.

By induction on the length of γ, we obtain from the above that the reduction γ : t =
C ⟨⃗t⟩↠ C ⟨⃗t•⊚⟩, comprises only steps that are substitution instances of D[z⃗] so that C ⟨⃗t•⊚⟩
is as well. In particular note that each reduction from ti to t•i does not change its top
part (if any) overlapping the occurrence of ℓ, so is the same as that top part where all its

arguments have been reduced to •⊚-normal form. That is, C ⟨⃗t•⊚⟩ has shape D[z⃗]υ
•⊚
. By

the above, u then has shape E[w⃗]υ
•⊚
= E[u⃗•⊚] as common target of ϕ/γ and γ/ϕ.

• if t → s is not a µ-step then s = C⟨s⃗⟩ with ti → si for some i and tj = sj for all j ̸= i.
Then the Z-property holds for s⃗, i.e. s⃗ ↠ t⃗•⊚ ↠ s⃗•⊚ since by the IH si ↠ t•⊚i ↠ s•⊚i , and
sj ↠ t•⊚j = s•⊚j for all j ̸= i by extensivity of •⊚. We conclude to s = C⟨s⃗⟩ ↠ C ⟨⃗t•⊚⟩ ↠
C ⟨⃗t•⊚⟩• = t•⊚ ↠ C⟨s⃗•⊚⟩• = s•⊚, using that the Z-property holds for s⃗ by the IH and closure
of → under contexts for the first reduction, extensivity of • and ↪→ ⊆ → for the second,
and Z for s⃗ and closure under contexts and preservation of ↠ by • for the third.

Corollary 10. Under assumptions (i) and (ii), → is confluent and the bullet strategy •⊚−→,
iterating the bullet map •⊚ on objects [7], is a hyper-cofinal strategy.8

By Thm. 9 and [7, Lem. 51 & Thm. 50]. Thus •⊚−→ is (hyper-)normalising [8], and the layered
bullet function •⊚ induces an effective (if ↪→ is) confluence construction and cofinal strategy.

A concrete criterion Our approach to confluence of a term rewrite system (via the Z-
property) has confluence of context-sensitive rewriting ↪→ as an assumption; in fact local con-
fluence suffices given termination is also assumed. The following is a known sufficient condition
for local confluence of context-sensitive rewriting ↪→; see e.g. [6] (also for other conditions).

(iii) T , µ is 0-preserving if, whenever a variable occurs at depth 0 in the left-hand side of a
rule, then all its occurrences in the right-hand side are at depth 0 as well.

Lemma 11 (Thm. 30 of [6]). If T , µ is a left-linear CSR satisfying assumptions (i) and (iii)
with ↪→-joinable critical peaks, then context-sensitive rewriting ↪→ is locally confluent.

Since convectivity entails assumption (i), and ↪→-joinability of critical peaks and 0-preservingness
entail confluence of ↪→ for left-linear CSRs by Lem. 11, combining this with termination of T
all assumptions of Thm. 9 are satisfied:

Corollary 12. If T , µ is a left-linear 0-preserving CSR such that µ is convective, critical peaks
are ↪→-joinable, and context-sensitive rewriting ↪→ is terminating, then the TRS T , i.e. the
rewrite system →, has the Z-property for the layered bullet function •⊚.

This generalises [1, Thm. 2], the main result of that paper, both by relaxing two of its assump-
tions, canonicity to convectivity and level-decreasingness to 0-preservingness, and by strength-
ening its conclusion from confluence to the Z-property.

7A substitution τ such that for all i, τ(zi) either is a single step or a term.
8A →-strategy is hyper-cofinal [8, 7] if for any a↠ b, starting from a always eventually performing a •⊚−→-step

after a number of →-steps will yield an object c that exceeds b in the sense that b↠ c.

42

Z for ll-TRSs via convective complete CSRs V. van Oostrom

Example 13 (application to running example). The CSR of Ex. 3 is left-linear (by inspec-
tion of the left-hand sides; no repeated variables), 0-preserving (vacuously so, since there are
no variables at depth 0 in left-hand sides; all occur in overlined subterms), has a convective
replacement map (µcnv is the most restrictive such), and is terminating as was observed.

The (only) critical peak is between its fifth and sixth rules and is ↪→-joinable as shown
by (the following) two legs of its confluence diagram: inc(tl(from(x))) ↪→ tl(inc(from(x))) ↪→
tl(inc(x : from(s(x)))) ↪→ tl(s(x) : inc(from(s(x)))) ↪→ inc(from(s(x))) and inc(tl(from(x))) ↪→
inc(tl(x:from(s(x)))) ↪→ inc(from(s(x))).9 Corollary 12 yields→ has the Z-property, is confluent,
and •⊚−→ is an effective cofinal ↠-strategy.

Remark 14. The methods of [1] do not apply to yield the result of Ex. 13. Their methods
require level-decreasingness of the rules and the fifth added rule is not for the canonical re-
placement map µcan employed by them: the level of x in the lhs is then 1 whereas in the rhs it
occurs not only with level 1 but also with level 3. The only way to regain level-decreasingness
is to make both the second argument of : and the argument of s active, but that would violate
termination of ↪→ (the fifth rule becomes spiralling), one of the other assumptions of [1, Thm. 2].

Conclusion Based on a notion of convectivity introduced here, and by relaxing the as-
sumptions of [1, Thm. 2], we partially settled [1, Open Problem 1] by Cor. 12. In the long
note http://www.javakade.nl/research/pdf/z-csr.pdf we also positively settled [1, Open
Problem 2]. Though that note provides several examples other than Ex. 13 illustrating our
method, implementing it on top of an extant tool would open up the database of confluence
problems for easy experimentation. See [2] for more on that w.r.t. the tool CONFident.

Acknowledgments We thank Nao Hirokawa & Salvador Lucas for inspiration & feedback.

References

[1] B. Gramlich and S. Lucas. Generalizing Newman’s lemma for left-linear rewrite systems. In 17th
RTA, volume 4098 of LNCS, pages 66–80. Springer, 2006. https://doi.org/10.1007/11805618_6.

[2] R. Gutiérrez, S. Lucas, and M. Vı́tores. Proving confluence in the confluence framework with
CONFident, 2023. https://doi.org/10.48550/arXiv.2306.16330.

[3] N. Hirokawa. Seven confluence criteria for solving COPS #20. In C. Rocha and S. Winkler, editors,
11th IWC, 2022. Invited talk. http://cl-informatik.uibk.ac.at/iwc/2022/.

[4] N. Hirokawa, J. Nagele, V. van Oostrom, and M. Oyamaguchi. Confluence by critical pair analysis
revisited. In CADE 27, volume 11716 of LNCS, pages 319–336. Springer, 2019. https://doi.org/
10.1007/978-3-030-29436-6_19.

[5] S. Lucas. Derivational complexity and context-sensitive rewriting. Journal of Automated Reasoning,
65(8):1191–1229, 2021. https://doi.org/10.1007/s10817-021-09603-1.

[6] S. Lucas, M. Vı́tores, and R. Gutiérrez. Proving and disproving confluence of context-sensitive
rewriting. Journal of Logical and Algebraic Methods in Programming, 126:100749, 2022. https:

//doi.org/10.1016/j.jlamp.2022.100749.

[7] V. van Oostrom. Z; syntax-free developments. In 6th FSCD 2021, volume 195 of LIPIcs, pages 24:1–
24:22. Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.FSCD.2021.24.

[8] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

9Indeed, as pointed out by Salvador Lucas (personal communication 1-6-2023) termination and local con-
fluence of this CSR are established automatically by CONFident (http://zenon.dsic.upv.es/confident/).

43

http://www.javakade.nl/research/pdf/z-csr.pdf
https://doi.org/10.1007/11805618_6
https://doi.org/10.48550/arXiv.2306.16330
http://cl-informatik.uibk.ac.at/iwc/2022/
https://doi.org/10.1007/978-3-030-29436-6_19
https://doi.org/10.1007/978-3-030-29436-6_19
https://doi.org/10.1007/s10817-021-09603-1
https://doi.org/10.1016/j.jlamp.2022.100749
https://doi.org/10.1016/j.jlamp.2022.100749
https://doi.org/10.4230/LIPIcs.FSCD.2021.24
http://zenon.dsic.upv.es/confident/

Ground Canonical Rewrite Systems Revisited

Aart Middeldorp1, Masahiko Sakai2, and Sarah Winkler3

1 University of Innsbruck, Innsbruck, Austria, aart.middeldorp@uibk.ac.at
2 Nagoya University, Nagoya, Japan, sakai@i.nagoya-u.ac.jp

3 Free University of Bozen-Bolzano, Bolzano, Italy, winkler@inf.unibz.it

Abstract

Systems of ground equations can always be transformed into equivalent canonical
rewrite systems. Moreover, only finitely many distinct canonical rewrite systems exist
for a given system of ground equations, a result proved by Snyder using congruence clo-
sure. Snyder also introduced a simple transformation to convert one canonical presentation
into another one. In this paper we prove that this transformation is sound and complete,
using standard rewrite techniques. We show that the transformation fails in the AC case.

1 Introduction

Congruence closure is an efficient technique to solve the word problem for systems of ground
equations. Completion is a well-known technique for transforming systems of equations into
equivalent canonical rewrite systems. It takes a reduction order as input and if it succeeds, the
word problem is decidable by computing and comparing the unique normal forms of the two
terms involved. For systems of ground equations, completion can be tamed such that it always
terminates. Snyder [5] proved that the number of distinct canonical rewrite systems representing
a given set of ground equations is at most 2k where k is the number of equations. Furthermore,
each of these canonical rewrite systems has the same number of rewrite rules. Finally, given
one canonical rewrite system, all others can be obtained by a simple transformation.

This transformation is the topic of the paper. Using traditional rewrite techniques, which
we briefly recall in Section 2, we prove in Section 3 that the transformation preserves canonicity
and that it is complete in the sense that all canonical presentations of a given system of ground
equations can be obtained from any of them by a finite number of transformation steps. In
Section 4 we consider the extension of Snyder’s transformation in the presence of associative
and commutative operators. We conclude with some open questions.

2 Preliminaries

We assume familiarity with term rewriting but recall some important concepts and results in
this preliminary section. An equational system (ES for short) is a set of equations between
terms over a common signature. Throughout this paper we will consider finite ground TRSs.
Every ground ES is also a TRS, and vice versa. A TRS is right-reduced if the right-hand sides
of its rewrite rules are normal forms. It is left-reduced if every left-hand side of a rewrite rule
is a normal form with respect to the other rules. A reduced TRS is both left-reduced and
right-reduced. A TRS that is confluent, terminating and reduced is called canonical. Given
a TRS R, we denote the set of left-hand (right-hand) sides of its rules by LHS(R) (RHS(R)).
The set of its normal forms is denoted by NF(R).

Two TRSs R and S are (conversion) equivalent if ↔∗
R =↔∗

S and normalization equivalent
if →!

R = →!
S . Here t →!

R u if both t →∗
R u and u ∈ NF(R). A simple sufficient condition

for normalization equivalence of canonical TRSs is stated in the following lemma, which is a
special case of [1, Lemma 4.4(2)].

44

Ground Canonical Rewrite Systems Revisited Middeldorp, Sakai, Winkler

Lemma 1. If R and S are canonical TRSs such that NF(S) ⊆ NF(R) and →S ⊆ ↔∗
R then R

and S are normalization equivalent.

We conclude this preliminary section with two basic results that will be used in the sequel.
We refer to [1] for modern (formalized) proofs of these results. The first one is a variation of a
result by Métivier [3] and the second one is due to Snyder [5, Theorem 2.14].

Theorem 2.

1. Normalization equivalent reduced TRSs are unique up to literal similarity.

2. Reduced ground TRSs are canonical.

For ground TRSs, literal similarity amounts to equality, so normalization equivalent reduced
ground TRSs are unique and equivalent canonical ground TRSs compatible with the same
reduction order are identical.

3 Snyder’s Transformation

Snyder [5, Theorem 3.18] showed how any set of ground equations E can be transformed into a
special structure-sharing dag G from which an abstract relation T is extracted which represents
a canonical ground TRS R equivalent to E . The procedure runs in O(n log n) time, where n
is the size of E , though it may require more than O(n log n) time to actually obtain the TRS
R from the dag. The method is complete in the sense that any canonical ground TRS R
equivalent to E can be obtained in this way [5, Theorem 4.6]. This completeness result relies
on the existence of a compatible well-founded order with the subterm property that is total on
ground terms [5]. Furthermore, if E consists of k equations then there are at most 2k equivalent
canonical ground TRSs [5, Theorem 4.7]. This final result relies on the fact that any equivalent
canonical TRS has at most k rewrite rules (which follows from ground completion, as remarked
in [5, p. 424]).

Snyder mentions at the end of Section 4 that a single transformation is sufficient to generate
all other equivalent canonical ground TRS from any given canonical TRS. This transformation
is defined as follows:

R⊎ {ℓ→ r} =⇒ R′ ∪ {r → ℓ} (⋆)

Here R⊎ {ℓ→ r} is a canonical ground TRS such that r is not a proper subterm of ℓ, and R′

is the ground TRS obtained from R by replacing every occurrence of r in the rewrite rules by
ℓ. No proofs are provided, cf. [5, footnote 15].

Example 3. The collection of ground equations

f(a) ≈ g(b, b) f(f(a)) ≈ a f(f(f(a))) ≈ a

g(b, h(a)) ≈ g(b, b) h(a) ≈ b i(f(a)) ≈ c

admits six different canonical TRSs, which are connected by (⋆) as depicted in Figure 1, where
the labels of arrows indicate the rule that was flipped.

Below we present detailed proofs concerning the transformation (⋆). We write t{r 7→ ℓ} for
the term obtained from t after replacing all subterms r by ℓ. The canonicity of R′ ∪ {r → ℓ}
is relatively easy to prove.

45

Ground Canonical Rewrite Systems Revisited Middeldorp, Sakai, Winkler

1. f(g(b, b)) → g(b, b)
2. a → g(b, b)
3. h(g(b, b)) → b
4. i(g(b, b)) → c

2⇐⇒
1. f(a) → a
2. g(b, b) → a
3. h(a) → b
4. i(a) → c

3⇐⇒
1. f(a) → a
2. g(h(a), h(a)) → a
3. b → h(a)
4. i(a) → c

~w�4

~w�4

~w�4

1. f(g(b, b)) → g(b, b)
2. a → g(b, b)
3. h(g(b, b)) → b
4. c → i(g(b, b))

2⇐⇒
1. f(a) → a
2. g(b, b) → a
3. h(a) → b
4. c → i(a)

3⇐⇒
1. f(a) → a
2. g(h(a), h(a)) → a
3. b → h(a)
4. c → i(a)

Figure 1: Six equivalent canononical TRSs.

Lemma 4. The TRS R′ ∪ {r → ℓ} is canonical.

Proof. We first show that R′ ∪ {r → ℓ} is right-reduced. Suppose to the contrary that a right-
hand side t of a rule in R′ ∪ {r → ℓ} is reducible with a rule u→ v ∈ R′ ∪ {r → ℓ}. Since we
deal with ground TRSs, t ⊵ u. Since right-hand sides of rules in R′ ∪ {r → ℓ} do not contain
occurrences of r, u → v ∈ R′. Let u′ → v′ be the rule in R such that u = u′{r 7→ ℓ} and
v = v′{r 7→ ℓ}. Similarly, let t′ be the right-hand side of a rule in R such that t = t′{r 7→ ℓ}.
From t ⊵ u we infer t′ ⊵ u′, contradicting the fact that R ∪ {ℓ→ r} is right-reduced. Next
we show that R′ ∪ {r → ℓ} is left-reduced. Let t be the left-hand side of a rewrite rule in
R′ ∪ {r → ℓ}. We distinguish two cases.

� Suppose t = r /∈ NF(R′). So r ⊵ v for some left-hand side v of a rewrite rule in R′. Since ℓ
is not a proper subterm of r by assumption and ℓ = r is excluded by the right-reducedness
of R ∪ {ℓ→ r}, v contains no occurrences of ℓ. It follows that v is the left-hand side of
a rewrite rule in R, contradicting the right-reducedness of R∪ {ℓ→ r}.

� Suppose t → u ∈ R′ with t /∈ NF((R′ ∪ {r → ℓ}) \ {t→ u}). Since t does not contain
any occurrences of r, we have t /∈ NF(R′ \ {t→ u}). Let v → w be a rewrite rule in
R′ \ {t→ u} such that t ⊵ v. Let t′ and v′ be the left-hand sides of rules in R such that
t = t′{r 7→ ℓ} and v = v′{r 7→ ℓ}. We have t′ ⊵ v′, contradicting left-reducedness of R.

The proof is concluded by the canonicity of reduced ground TRSs, cf. Theorem 2 (2).

We next show that every canonical presentation S of an ES E can be obtained from another
canonical presentation R by a sequence of (⋆) transformations.

Theorem 5. Transformation (⋆) is complete.

Proof. Let E be an ES and R a canonical presentation of E . For an arbitrary canonical repre-
sentation S of E , we prove by induction on |RHS(S) \ NF(R)| that R can be transformed into
S by a sequence of (⋆) transformations. First, note the following:

NF(R) ∩ LHS(S) = ∅ =⇒ R = S (†)

46

Ground Canonical Rewrite Systems Revisited Middeldorp, Sakai, Winkler

This can be shown as follows. From the assumption we obtain NF(R) ⊆ NF(S) as NF(R) is
closed under subterms. Conversion equivalence implies→R ⊆ ↔∗

S and R is terminating. Hence
R and S are normalization equivalent by Lemma 1 and equal by Theorem 2 (1).

In the base case RHS(S) ⊆ NF(R). By (†), if S ≠ R, there is some u → v ∈ S such
that u ∈ NF(R). However, RHS(S) ⊆ NF(R) implies v ∈ NF(R), which contradicts conversion
equivalence as u and v are different convertible normal forms in R.

In the induction step, we can assume by (†) that S contains a rule u → v such that
u ∈ NF(R). Conversion equivalence and completeness of R imply v →+

R u. In particular, v is
not a proper subterm of u and hence we can apply transformation (⋆) to u→ v in S. Let S ′ be
the resulting TRS, which is canonical and contains v → u. We compare RHS(S) \ NF(R) and
RHS(S ′) \ NF(R). The former contains v as u → v ∈ S and v /∈ NF(R). This rule is replaced
by v → u in S ′, which does not contribute to RHS(S ′) \ NF(R) as u ∈ NF(R). In addition,
(⋆) may replace right-hand sides r[v] ∈ RHS(S) by r[u] ∈ RHS(S ′), but for all such terms r[v],
we have r[v] ∈ RHS(S) \ NF(R). Independent of whether or not r[u] ∈ RHS(S ′) \ NF(R) for
some of the modified right-hand sides, we have |RHS(S) \NF(R)| > |RHS(S ′) \NF(R)|. By the
induction hypothesis a sequence of (⋆) transformations can turn S ′ into R.

4 Ground AC-Canonical Rewrite Systems

Marché [2, Theorem 3.1] proved that any AC canonical ground TRS for a finite set of ground
equations with AC operators must be finite. The interesting proof relies on Dickson’s Lemma.
In the same paper, Marché presents a version of ground completion for the AC setting and
a strategy that ensures termination [2, Theorem 4.3]. Unlike ground completion, in the AC
setting critical pairs involving rules with the same AC symbol at the root of left-hand side
need to be deduced. Unlike for AC completion, AC unification is not needed for computing
these critical pairs. Ground AC completion relies on an AC simplification order which is AC
total on ground terms. The existence of such an order was first shown by Narendran and
Rusinowitch [4].

The next example shows that the transformation (⋆) is unsuitable in an AC setting.

Example 6. The ground equations

f(a, b) ≈ d f(b, c) ≈ e

with AC symbol f admit five different AC canonical TRSs:

A f(a, b)
1−→ d f(b, c)

2−→ e f(a, e)
3−→ f(c, d)

B f(a, b)
1−→ d f(b, c)

2−→ e f(a, e)
3←− f(c, d)

C f(a, b)
1−→ d f(b, c)

2←− e

D f(a, b)
1←− d f(b, c)

2−→ e

E f(a, b)
1←− d f(b, c)

2←− e

If we apply (⋆) to A by reversing rule 1 then rule 3 is first modified to f(a, e) ≈ f(a, b, c) and
subsequently deleted due to rule 2, resulting in D. (This cannot happen in the non-AC case.)
Applying the AC version of (⋆) systematically yields the following diagram:

47

Ground Canonical Rewrite Systems Revisited Middeldorp, Sakai, Winkler

A C

D B E

3

2

1 2

1

1

2

Selecting rule 1 in D or rule 2 in C results in the TRS

F f(a, b)
1−→ d f(b, c)

2−→ e

which is not AC confluent. From F we obtain A and B by orienting the single AC critical pair.

The underlying problem is that reduced ground TRSs need not be AC confluent, necessitat-
ing the computation of AC critical pairs. In general, however, after applying (⋆) and resolving
AC critical pairs, new critical pairs may arise. Worse, reversing a rule might violate termination.

Example 7. The TRS R consisting of the two rules

f(b, c)→ f(a, b) f(c, d)→ f(d, a)

with AC symbol f is AC canonical. Reversing the first rule results in the TRS R′:

f(a, b)→ f(b, c) f(c, d)→ f(d, a)

Transformation (⋆) requires no further changes. However, AC termination is violated:

f(a, b, d)→R′/AC f(b, c, d)→R′/AC f(a, b, d)

Despite the fact that the first AC completion procedures have been presented thirty years
ago, many questions about even the simpler setting of ground AC completion are still open,
for instance: Is the number of AC canonical presentations of an ES finite? If yes, how many
such presentations are there? Can every equivalent AC canonical ground TRS be generated by
modifying the AC termination order?

Acknowledgments. Part of this work was performed when the first author was employed at
the Future Value Creation Research Center of Nagoya University, Japan.

References

[1] Nao Hirokawa, Aart Middeldorp, Christian Sternagel, and Sarah Winkler. Abstract completion,
formalized. Logical Methods in Computer Science, 15(3):19:1–19:42, 2019.

[2] Claude Marché. On ground AC-completion. In Proceedings of the 4th International Conference on
Rewriting Techniques and Applications, volume 488 of Lecture Notes in Computer Science, pages
411–422, 1991.

[3] Yves Métivier. About the rewriting systems produced by the Knuth–Bendix completion algorithm.
Information Processing Letters, 16(1):31–34, 1983.

[4] Paliath Narendran and Michaël Rusinowitch. Any ground associative-commutative theory has a
finite canonical system. In Proceedings of the 4th International Conference on Rewriting Techniques
and Applications, volume 488 of Lecture Notes in Computer Science, pages 423–434, 1991.

[5] Wayne Snyder. A fast algorithm for generating reduced ground rewriting systems from a set of
ground equations. Journal of Symbolic Computation, 15(4):415–450, 1993.

48

Formalizing Confluence and Commutation Criteria Using

Proof Terms∗

Christina Kohl and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
{christina.kohl,aart.middeldorp}@uibk.ac.at

Abstract

We present recent advancements concerning formalizations of state-of-the-art conflu-
ence and commutation criteria. In particular we describe formalizations of several ex-
tensions of van Oostrom’s development-closedness criterion in the proof assistant Isa-
belle/HOL. A key component for the formalized proofs is the concept of proof terms
representing multi-steps.

1 Introduction

Recently we presented the first formalized proof of van Oostrom’s development-closedness crite-
rion [4]. Since then, we were able to extend this result in several ways, which we describe here.
In Section 2 we first give some basic definitions and recap proof terms representing multi-steps
in term rewriting—a concept which proved to be very valuable for formalizing critical pair
criteria based on multi-steps (also known as development steps). In Section 3 we present our
formalization of almost development closed critical pairs for commutation of two term rewrite
systems.1 This is an extension of the result described in [4] in two ways: First, it weakens the
joinability requirement for critical pairs which are overlays,2 second, it uses the critical pairs
between two left-linear TRSs to determine whether they commute. In Section 4 we describe
our most recent extension, namely a formalized proof of the results in [3].

2 Preliminaries

We assume familiarity with the basics of term rewriting, as can be found in [1], and only recap
some important definitions here. A relation → is confluent if

∗← · →∗ ⊆ →∗ · ∗←

Two relations →1 and →2 (locally) commute if

→∗
1 · →∗

2 ⊆ →∗
2 · →∗

1 (1← · →2 ⊆ →∗
2 · →∗

1)

We say that →1 and →2 strongly commute if

1← · →2 ⊆ →=
2 · →∗

1

Strong commutation of →1 and →2 implies commutation of →1 and →2. If → commutes with
itself then it is confluent. The multi-step relation ◦−→R is inductively defined on terms as follows:

∗This research is funded by the Austrian Science Fund (FWF) project I5943.
1A more detailed description of this formalization effort will appear in [5].
2An idea first described by Toyama for parallel closed critical pairs in [6] and adapted by van Oostrom for

development closed critical pairs [7].

49

Formalizing Confluence and Commutation Criteria Using Proof Terms Kohl, Middeldorp

� x ◦−→R x for all variables x,

� f(s1, . . . , sn) ◦−→R f(t1, . . . , tn) if si ◦−→R ti for all 1 ⩽ i ⩽ n, and

� ℓσ ◦−→R rτ if ℓ→ r ∈ R and σ(x) ◦−→R τ(x) for all x ∈ Var(ℓ).

A critical overlap (ℓ1 → r1, p, ℓ2 → r2)σ of two TRSs R and S consists of variants ℓ1 → r1
and ℓ2 → r2 of rewrite rules in R and S without common variables, a position p ∈ PosF (ℓ2),
and a most general unifier σ of ℓ1 and ℓ2|p. From a critical overlap (ℓ1 → r1, p, ℓ2 → r2)σ we
obtain a critical peak ℓ2σ[r1σ]p R1

← ℓ2σ[ℓ1σ]p = ℓ2σ →R2
r2σ and the corresponding critical

pair ℓ2σ[r1σ]p R←⋊→S r2σ. When p = ϵ we call r1σR←⋊→S r2σ an overlay. TRSs R and S
are development closed if s ◦−→S t for all critical pairs sR←⋊→S t and s ◦−→R t for all critical
pairs s S←⋊→R t.

Proof terms are built from function symbols, variables, and rule symbols. We use Greek
letters for rule symbols. If α is a rule symbol then lhs(α) (rhs(α)) denotes the left-hand (right-
hand) side of the rewrite rule denoted by α. Furthermore var(α) denotes the list (x1, . . . , xn)
of variables appearing in α in some fixed order. The length of this list is the arity of α. The
list vpos(α) = (p1, . . . , pn) denotes the corresponding variable positions in lhs(α) such that
lhs(α)|pi = xi. Given a rule symbol α with var(α) = (x1, . . . , xn) and terms t1, . . . , tn, we write
⟨t1, . . . , tn⟩α for the substitution {xi 7→ ti | 1 ⩽ i ⩽ n}. Given a proof term A, its source src(A)
and target tgt(A) are computed by the following equations:

src(x) = tgt(x) = x

src(f(A1, . . . , An)) = f(src(A1), . . . , src(An))

src(α(A1, . . . , An)) = lhs(α)⟨src(A1), . . . , src(An)⟩α
tgt(f(A1, . . . , An)) = f(tgt(A1), . . . , tgt(An))

tgt(α(A1, . . . , An)) = rhs(α)⟨tgt(A1), . . . , tgt(An)⟩α

Proof terms A and B are said to be co-initial if they have the same source. The proof term A
over TRS R is a witness of the multi-step src(A) ◦−→R tgt(A). For every multi-step there exists
a proof term witnessing it. For co-initial proof terms A and B the residual A/B is a proof term
witnessing the remainder of A after contracting the redexes of B. This can be formally defined
as a partial operation with several useful properties which are exploited in the proofs below.
The amount of overlap between two co-initial proof terms A and B is denoted by▲(A,B) and
is measured as the number of function symbols in src(A) = src(B) that are part of a redex in
both A and B. If a redex in A at position p ∈ src(A) overlaps with a redex in B at position
q ∈ src(B) then we call the pair (p, q) an overlap between A and B. The formal definitions, as
well as useful lemmata about the aforementioned operations, can be found in [4].

The formalized results of the next sections are integrated into the library IsaFoR.3 The
contributions described in this paper are located in the file Development Closed.thy.

3 Almost Development Closed Critical Pairs

In [4] we described the formalized proof of van Oostrom’s development-closedness criterion [7].

Theorem 1. Left-linear development closed TRSs are confluent.

3http://cl-informatik.uibk.ac.at/isafor

50

http://cl-informatik.uibk.ac.at/isafor

Formalizing Confluence and Commutation Criteria Using Proof Terms Kohl, Middeldorp

When introducing his criterion in [7] van Oostrom already gave an extension where the
joining condition on overlays is weakened. This extension is modeled after Toyama’s almost
parallel closed critical pairs [6]. Just like Toyama’s result, almost development closed critical
pairs can be lifted to the commutation setting, resulting in the following theorem.

Theorem 2. Let R and S be two left-linear TRSs. If s ◦−→S · →∗
R t for all critical pairs

sR←⋊→S t, and s ◦−→R t for all critical pairs s S←⋊→R t which are not overlays, then R and
S commute.

In [7] it is suggested to adapt the measure (▲) used in the proof of Theorem 1 in order to
obtain a proof of the extended result. This turned out to be problematic as we describe in [5].
For the formalized proof we instead add another case distinction in the step case of the proof
used for Theorem 1.

Formalized proof. We show strong commutation of ◦−→R and ◦−→S , which implies commutation
of ◦−→R and ◦−→S and hence commutation of →R and →S . Assume t R ◦←− s ◦−→S u and let A
be a proof term representing s ◦−→R t and let B be a proof term representing s ◦−→S u. We
show t ◦−→S v →∗

R u for some term v by well-founded induction on ▲(A,B).

� In the base case ▲(A,B) = 0 which implies that A/B is a proof term over R and B /A
a proof term over S such that tgt(A / B) = tgt(B / A).

� In the induction step we assume▲(A,B) > 0. To apply the induction hypothesis we need
to obtain proof terms A′ over R and B′ over S such that▲(A′, B′) <▲(A,B). We select
an innermost overlap (p, q) and let α and β be the corresponding rule symbols in A and
B. Moreover, let vpos(α) = (p1, . . . , pn), var(α) = (x1, . . . , xn), vpos(β) = (q1, . . . , qm)
and var(β) = (y1, . . . , ym), where we assume {x1, . . . , xn} ∩ {y1, . . . , ym} = ∅ with-
out loss of generality. We define proof terms ∆1 = s[α(s|pp1

, . . . , s|ppn
)]p and ∆2 =

s[β(s|qq1 , . . . , s|qqm)]q. Then ∆1 represents a single step s → t′ and the residual A / ∆1

witnesses t′ ◦−→ t for some term t′. Likewise ∆2 represents a step s → u′ and B / ∆2

witnesses u′ ◦−→ u for some term u′. We distinguish three cases.

1. For q < p and q′ = p\q we define the substitution

τ = {xi 7→ lhs(β)|q′pi
| 1 ⩽ i ⩽ n and q′pi ∈ Pos(lhs(β))}

∪ {yj 7→ lhs(α)|qj\q | 1 ⩽ j ⩽ m and qj\q ∈ PosF (lhs(α))}

which yields the critical peak [4, Lemma 7.2]

lhs(β)[rhs(α)τ]q′ R← lhs(β)[lhs(α)τ]q′ = lhs(β)τ →S rhs(β)τ

We define the position qβ ∈ Pos(B) such that B = B[β(B1, . . . , Bm)]qβ and
src(B)[]q = src(B[]qβ). By the almost development closedness assumption there
exists a multi-step lhs(β)[rhs(α)τ]q′ ◦−→S rhs(β)τ . Let D′ be a proof term represent-
ing this multi-step. We define the substitution

ρ = {yj 7→ Bj | 1 ⩽ j ⩽ m} ∪ {xi 7→ lhs(β)⟨B1, . . . , Bm⟩β |q′pi | 1 ⩽ i ⩽ n}

and show that the proof term B′ = B[D′ρ]qβ witnesses a multi-step t′ ◦−→S u. Finally,
we show ▲(A′, B′) <▲(A,B) for A′ = A /∆1 [4, Lemma 7.8].

2. If p < q a symmetric construction yields a proof term A′ witnessing u′ ◦−→R t such
that ▲(A′, B′) <▲(A,B) for B′ = B /∆2.

51

Formalizing Confluence and Commutation Criteria Using Proof Terms Kohl, Middeldorp

3. If p = q we can apply the same construction as in the first case, but the almost
development closedness assumption yields a term v′, a proof term D′ witnessing
rhs(α)τ ◦−→S v′, and a rewrite sequence rhs(β)τ →∗

R v′. Then B′ = B[D′ρ]qβ wit-
nesses a multi-step t′ ◦−→S w for some term w. Like before, ▲(A′, B′) < ▲(A,B)
for A′ = A / ∆1. Moreover, u →∗

R w since u = tgt(B[rhs(β)τρ]qβ) and w =
tgt(B[D′ρ]qβ) = tgt(B[v′ρ]qβ).

The previous items allow us to apply the induction hypothesis to obtain a term v such
that t ◦−→S v →∗

R u, which completes the proof.

4 Commutation via Relative Termination

We formalized another extension of Theorem 1 for commutation due to Hirokawa and Middel-
dorp [3]. It is based on local commutation together with relative termination of the critical
peak steps between two TRSs R and S. In this section, when we speak of a critical peak

t R
p← s

q→S u we either mean the critical peak t R
p← s

ϵ→S u or the critical peak u S
q← s

ϵ→R t.

Definition 3. Let t R
p← s

q→S u be a critical peak. It is (R,S)-closed if u ◦−→R t whenever
p = ϵ and t ◦−→S u whenever q = ϵ. The set of all non-closed critical peak steps of S for R is

defined as CPSR(S) = {s→ u | t R
p← s

q→S u is a critical peak which is not (R,S)-closed}.

Theorem 4 ([3, Theorem 4.3]). Left-linear locally commuting TRSs R and S commute if
CPSS(R) ∪ CPSR(S) is relatively terminating with respect to R∪ S.

Recall that a TRSR is relatively terminating with respect to a TRS S ifR/S is terminating.
Here R/S denotes the relation →∗

S · →R · →∗
S . The following key lemma is needed in addition

to results from the previous sections in order to prove Theorem 4. The formalized proof closely
follows the paper proof in [3] and is very similar to the proof of Theorem 2.

Lemma 5. Let R and S be left-linear TRSs. If t R ◦←− s ◦−→S u then

(a) t ◦−→S · R ◦←− u, or

(b) t R ◦←− · CPSS(R)← s′ →CPSR(S) · ◦−→S u and s→∗
R∪S s

′ for some s′.

Formalized proof. Assume t R ◦←− s ◦−→S u and let A be a proof term representing s ◦−→R t and
let B be a proof term representing s ◦−→S u. Like in the proof of Theorem 2 we proceed by
induction on ▲(A,B).

� If ▲(A,B) = 0 case (a) holds (by taking the residuals B / A and A / B).

� If ▲(A,B) > 0. We select an innermost overlap (p, q), assume without loss of generality
that q ⩽ p and let q′ = p\q. Then we define ∆1, ∆2, and τ as in the proof of Theorem 2.
Hence, we obtain a critical peak t′ R ◦←− s′ ◦−→S u′ where t′ = lhs(β)[rhs(α)τ]q′ , s

′ =
lhs(β)[lhs(α)τ]q′ = lhs(β)τ , and u′ = rhs(β)τ . We distinguish two cases.

1. If the peak t′ R ◦←− s′ ◦−→S u′ is not (R,S)-closed then s′ → t′ ∈ CPSS(R) and
s′ → u′ ∈ CPSR(S). We define the substitution

σ = {xi 7→ s|ppi | 1 ⩽ i ⩽ n} ∪ {yj 7→ s|qqj | 1 ⩽ j ⩽ m}

52

Formalizing Confluence and Commutation Criteria Using Proof Terms Kohl, Middeldorp

and show tgt(∆1) = s[t′σ]q′ and tgt(∆2) = s[u′σ]q′ . Then A /∆1 witnesses a multi-
step s[t′σ]q′ ◦−→R t and B /∆2 witnesses a multi-step s[u′σ]q′ ◦−→S u. Hence

t R ◦←− · CPSS(R)← s →CPSR(S) · ◦−→S u

i.e., case (b) holds.

2. If the peak t′ R ◦←− s′ ◦−→S u′ is (R,S)-closed then there exists a proof term D′

witnessing t′ ◦−→S u′. Hence, we can apply the same constructions as in the proof of
Theorem 2 to obtain a proof term B[D′ρ]qβ such that src(B[D′ρ]qβ) = src(A/∆1) =
tgt(∆1), tgt(B[D′ρ]qβ) = tgt(B) = u, and ▲(A / ∆1, B[D′ρ]qβ) < ▲(A,B). The
induction hypothesis now yields the following two cases:

(a) t ◦−→S · R ◦←− u, or
(b) t R ◦←− · CPSS(R)← s′′ →CPSR(S) · ◦−→S u and tgt(∆1)→∗

R∪S s
′′ for some s′′.

In the first case we are immediately done. In the second case it remains to show
s→∗

R∪S s
′′. This is straightforward since ∆1 witnesses a rewrite step s→R tgt(∆1)

and we have the rewrite sequence tgt(∆1)→∗
R∪S s

′′.

Formalized proof of Theorem 4. Assume R and S are left-linear and locally commuting. More-
over, assume (CPSS(R) ∪ CPSR(S))/(R ∪ S) is terminating. We show that the TRSs R and
S are decreasing with respect to the conversion version of van Oostrom’s decreasing diagrams
technique [8, Theorem 3]. In Isabelle we use Felgenhauer’s formalization [2]. We first define the
labeled multi-step relations t ◦−→R,s u if and only if s→∗

R∪S t ◦−→R u and, similarly, t ◦−→S,s u
if and only if s→∗

R∪S t ◦−→S u. The relation > is defined as

→+
(CPSS(R)∪CPSR(S))/(R∪S)

We show that ({ ◦−→R,s}s∈T , { ◦−→S,s}s∈T) is decreasing with respect to >. Note that > is
well-founded by assumption and transitive by definition. It remains to show that every local
peak t R,s1 ◦←− s ◦−→R,s2 u can be completed into a decreasing diagram with conversions as
illustrated in Figure 1. To this end, we apply Lemma 5 to the peak t R,s1 ◦←− s ◦−→R,s2 u. We
need to consider the two cases of Lemma 5:

(a) First assume there exists a term v such that t ◦−→S v R ◦←− u. Since s2 →∗
R∪S t ◦−→S v we

have t ◦−→S,s2 v. Similarly we have u ◦−→R,s1 v. Hence, by taking empty sequences for all
conversions in Figure 1, we can complete the peak.

(b) Next assume there exist terms s′, t′, u′ such that t R ◦←− t′ CPSS(R)← s′ →CPSR(S) u
′ ◦−→S u

and s →∗
R∪S s′. Since R and S are locally commuting, we obtain a term v such that

t′ →∗
S v →∗

R u′. We show that the peak can be completed by a conversion

t
∗←−−−→

<s1s2
t′

∗←−−−→

<s1s2
v

∗←−−−→

<s1s2
u′

∗←−−−→

<s1s2
u

with steps in R∪ S. From t′ ◦−→R t we obtain t′ ◦−→R,t′ t. Moreover, t′ < s1 since

s1 →∗
R∪S s →∗

R∪S s′ ◦−→CPSS(R) t
′

Similarly, u′ ◦−→S,u′ u and u′ < s2. From t′ →∗
S v we obtain a rewrite sequence

t′ ◦−→S,t′ · · · ◦−→S,t′ v

So each step can be labeled with t′ for which we already showed t′ < s1. Similarly,
u′ ◦−→R,u′ · · · ◦−→R,u′ v is obtained.

53

Formalizing Confluence and Commutation Criteria Using Proof Terms Kohl, Middeldorp

s

t u

R,s1
S,s

2

∗

<s1

∗

<s2=
S,s

2

=

R,s1∗

<s1s2

Figure 1: Decreasingness of ({ ◦−→R,s}s∈T , { ◦−→S,s}s∈T).

Formalizing the results of this section turned out to be surprisingly straightforward. In
order to implement CPSR(S), we had to add a definition of critical peaks for two different
TRSs (the existing definition in IsaFoR only takes a single TRS as argument). All other relevant
definitions and results were already present in IsaFoR or the Archive of Formal Proofs. In total
the formalization only required a little more than 500 (new) lines of Isabelle code.

Theorem 4 subsumes Theorem 1 and its commutation version as CPSS(R)∪ CPSR(S) = ∅
and R and S are locally commuting for all left-linear TRSs R and S which are development
closed. In [3] it is stated without proof that Theorem 4 can be strengthened by implementing
the same weakening for overlays as in Theorem 2, hence also subsuming Theorem 2. It is
however unclear how case (a) of the proof above works for this extension. The problem is that
we might get a sequence u →∗

R v, instead of a multi-step, for which we would need to show
that its labels are below s1 or s2.

References

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1998. doi:10.1017/CBO9781139172752.

[2] Bertram Felgenhauer. Decreasing diagrams II. Archive of Formal Proofs, August 2015. https:

//isa-afp.org/entries/Decreasing-Diagrams-II.html, Formal proof development.

[3] Nao Hirokawa and Aart Middeldorp. Commutation via relative termination. In Proc. 2th IWC,
pages 29–33, 2013.

[4] Christina Kohl and Aart Middeldorp. A formalization of the development closedness criterion for
left-linear term rewrite systems. In Proc. 12th International Conference on Certified Programs and
Proofs, pages 197–210, 2023. doi:10.1145/3573105.3575667.

[5] Christina Kohl and Aart Middeldorp. Formalizing almost development closed critical pairs. In
Proc. 14th International Conference on Interactive Theorem Proving, pages 38:1–38:8, 2023. doi:

10.4230/LIPIcs.ITP.2023.38.

[6] Yoshihito Toyama. Commutativity of term rewriting systems. In Programming of Future Generation
Computers II, pages 393–407. North-Holland, 1988.

[7] Vincent van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–181,
1997. doi:10.1016/S0304-3975(96)00173-9.

[8] Vincent van Oostrom. Confluence by decreasing diagrams – Converted. In Proc. 19th International
Conference on Rewriting Techniques and Applications, volume 5117 of LNCS, pages 306–320, 2008.
doi:10.1007/978-3-540-70590-1_21.

54

https://doi.org/10.1017/CBO9781139172752
https://isa-afp.org/entries/Decreasing-Diagrams-II.html
https://isa-afp.org/entries/Decreasing-Diagrams-II.html
https://doi.org/10.1145/3573105.3575667
https://doi.org/10.4230/LIPIcs.ITP.2023.38
https://doi.org/10.4230/LIPIcs.ITP.2023.38
https://doi.org/10.1016/S0304-3975(96)00173-9
https://doi.org/10.1007/978-3-540-70590-1_21

A verified algorithm for deciding pattern completeness and

related properties∗

René Thiemann

Universität Innsbruck, Austria
rene.thiemann@uibk.ac.at

Abstract

Pattern completeness is the property that the left-hand sides of a functional program
cover all cases w.r.t. pattern matching. In the context of term rewriting a related notion
is quasi-reducibility, a prerequisite if one wants to perform ground confluence proofs by
rewriting induction.

In order to certify such confluence proofs, we develop an algorithm that decides pattern
completeness and that can be used to ensure quasi-reducibility. One of the advantages of
the algorithm is its simple structure: it is similar to that of a regular matching algorithm,
and it avoids the enumeration of all terms up to a given depth (the latter is required in
an existing decision procedure for quasi-reducibility.) Despite having a simple structure,
termination and soundness proofs for the algorithm are not immediate. However, these
properties have been verified in Isabelle/HOL.

1 Introduction

Consider programs written in a declarative style such as functional programs or term rewrite
systems, where evaluation is defined by pattern matching. In several applications it is important
to know that evaluation of a given program cannot get stuck, i.e., the programs should be
sufficiently complete. For instance in Isabelle/HOL [7], a function definition must be sufficiently
complete since HOL is a logic of total functions. And methods that are based on rewriting
induction [1, 8] require similar completeness results, e.g., for proving ground confluence.

In both applications the evaluation mechanism can be described as a set of rules ℓ → r
where evaluation replaces instances of left-hand sides (lhss) ℓσ by instances of right-hand sides
rσ. Let L be the set of lhss of some set of rules. We consider programs where lhss are first-
order terms over some finite signature F = C ⊎ D where C are constructor symbols and D
are defined symbols. Hence, input values to a function are represented by constructor ground
terms, denoted by T (C). We further assume a typed setting where we consider first-order
monomorphic types, i.e, every function symbol of arity n has a type τ1 × · · · × τn → τ0, where
each type τi is just a name and τ0 is called the target type. Also variables are typed and we
write Vτ for the set of variables of type τ . We define T (C)τ as the set of constructor ground
terms that have type τ , and we assume T (C)τ ̸= ∅ for all types τ .

We can now define a first notion to describe that a program cannot get stuck.

Definition 1 (Pattern Completeness of Programs). A program with lhss L is pattern complete,
if for all terms f(t1, . . . , tn), with f : τ1 × · · · × τn → τ0 ∈ D and (t1, . . . , tn) ∈ T (C)τ1 × · · · ×
T (C)τn , there is some ℓ ∈ L such that t = f(t1, . . . , tn) is matched by ℓ.

∗This research was supported by the Austrian Science Fund (FWF) project I 5943.

55

A verified algorithm for deciding pattern completeness and related properties René Thiemann

Example 2. Let CN = {true : B, false : B, 0 : N, s : N → N} be the set of constructors to
represent the Booleans and natural numbers in Peano notation. We consider a program RN
that defines a function to compute whether a natural number is even, i.e., D = {even : N→ B}.

even(0)→ true even(s(0))→ false even(s(s(x)))→ even(x) (1)

This program is pattern complete, since no matter which number n we provide as argument,
one of the lhss will match the term even(n); this fact can easily be seen by a case-analysis on
whether n represents 0, 1, or some larger number.

Note the importance of types: without them even(s(true)) would contradict completeness.

An alternative notion to pattern completeness is quasi-reducibility [5] where the difference
is that the matching can happen for an arbitrary subterm.

Definition 3 (Quasi-Reducibility of Programs). A program with lhss L is quasi-reducible, if
all terms f(t1, . . . , tn), with f : τ1×· · ·× τn → τ0 ∈ D and (t1, . . . , tn) ∈ T (C)τ1 ×· · ·×T (C)τn ,
there is some ℓ ∈ L such that a subterm of t = f(t1, . . . , tn) is matched by ℓ.

Clearly, pattern completeness implies quasi-reducibility, and if the root symbols of all lhss
in a program are within D, then the two notions coincide. The following example illustrates
the difference between the two notions.

Example 4. Consider CZ = {true : B, false : B, 0 : Z, s : Z → Z, p : Z → Z} to represent the
Booleans and integers in Peano notation, e.g., p(0) represents -1. Now we consider a program
RZ that defines a function to compute whether an integer number is even, i.e., D = {even :
Z→ B}. It consists of all rules of RN and the following additional rules.

even(p(0))→ false even(p(p(x)))→ even(x) (2)

s(p(x))→ x p(s(x))→ x (3)

This program is quasi-reducible since every term even(n) with n ∈ T (CZ)Z has a subterm
that is matched by some lhs: If n contains both s and p then one of the rules (3) is applicable.
Otherwise n is of the form si(0) or pi(0) and then rules (1) or (2) will be applicable.

But the program is not pattern complete since even(s(p(0))) is not matched by any lhs.

Kapur et al. proved decidability of quasi-reducibility [5]. They show that one may replace
the quantification over all constructor ground terms t1, . . . , tn in Definition 3 by a bounded
quantification where the depth of the terms ti is restricted by d, a number that can computed
from L; overall their decision procedure requires to enumerate exponentially many terms when-
ever C contains a symbol of arity 2 or larger. We are aware of two other algorithms to deduce
quasi-reducibility in more complex settings, e.g., where rules may be constrained by arithmetic
constraints such as “this rule is only applicable if x > 0” [4, 6], but both algorithms do not
properly generalize the result of Kapur et al. since they are restricted to linear lhss. Bouhoula
and Jacquemard [3] also designed an algorithm in a more complex setting with conditions and
constraints, and a back-end that is based on constrained tree automata techniques. Since their
soundness result is restricted to ground confluent systems, their algorithm is not applicable
in our use-case, since we want to verify ground confluence proofs on methods that rely upon
quasi-reducibility. Finally, Bouhoula developed an algorithm to verify ground confluence and
sufficient completeness at the same time [2], where we are not sure whether it can also be used
to just ensure completeness, e.g., for non-ground confluent systems.

In this paper we will provide a simple algorithm to decide pattern completeness. It avoids
to always enumerate all terms up to given depth, it is not restricted to linear lhss, and it does

56

A verified algorithm for deciding pattern completeness and related properties René Thiemann

not require tree automata algorithms. It can also be used as a sufficient criterion for quasi-
reducibility, and as a decision procedure for those programs where all lhss have a defined symbol
as root.

2 Pattern Completeness – The Linear Case

Before we design the new decision procedure for pattern completeness we first reformulate and
generalize this notion. A slightly more general notion than pattern completeness is already
provided by Aoto and Toyama [1]. They define the concept of a cover, where L covers a term
t if for all σcg there is some ℓ ∈ L that matches tσcg (here, σcg represents some arbitrary
constructor ground substitution where all variables are replaced by constructor ground terms).
Hence, pattern completeness can be formulated as the question whether f(x1, . . . , xn) is covered
by L for all defined symbols f where the xi’s are distinct variables.

We generalize the notion of a cover further into a pattern problem.

Definition 5 (Matching Problem and Pattern Problem). A matching problem is a finite set
mp = {(t1, ℓ1), . . . , (tn, ℓn)} that contains arbitrary pairs of terms. A pattern problem is a finite
set pp = {mp1, . . . ,mpk} of matching problems.

A matching problem mp is solvable w.r.t. some constructor ground substitution σcg if there
is some substitution γ such that tiσcg = ℓiγ for all (ti, ℓi) ∈ mp. A pattern problem pp is
solvable if for each constructor ground substitution σcg there is some mp ∈ pp such that mp is
solvable w.r.t. σcg. A set of pattern problems P is solvable if each pp ∈ P is solvable.

We further introduce a special matching problem ⊥mp that represents an unsolvable matching
problem. Similarly, we define ⊤pp as a new pattern problem that is always solvable. Finally,
⊥P represents a new unsolvable set of pattern problems.

Hence, the question of whether L covers t can be encoded in the pattern problem {{(t, ℓ)} |
ℓ ∈ L}. Similarly, Aoto and Toyama’s notion of strong quasi-reducibility [1] can also be encoded
as a pattern problem:

⋃
t∈{x1,...,xn,f(x1,...,xn)}{{(t, ℓ)} | ℓ ∈ L} expresses that one tries to find

a match at the root (t = f(x1, . . . , xn)) or a match for a direct subterm (t = xi). Finally, the
question of whether a program with lhss L and defined symbols D is pattern complete w.r.t.
Definition 1 is expressible as solvability of the set of pattern problems {{{(f(x1, . . . , xnf

), ℓ)} |
ℓ ∈ L} | f ∈ D} where nf is the arity of f and the variables x1, . . . , xnf

are distinct.

The following inference rules describe a decision procedure to determine solvability of linear
pattern problems. A matching problem {(t1, ℓ1), . . . , (tn, ℓn)} is linear if each ℓi is linear and
the variables of ℓi and ℓj are disjoint for i ̸= j. A pattern problem is linear if all its matching
problems are linear.

Definition 6 (Inference Rules for Linear Pattern Problems). We define → as a set of simpli-
fication rules for matching problems.

{(f(t1, . . . , tn), f(ℓ1, . . . , ℓn)} ⊎mp→ {(t1, ℓ1), . . . , (tn, ℓn)} ∪mp (decompose)

{(f(. . .), g(. . .)} ⊎mp→ ⊥mp if f ̸= g (clash)

{(t, x)} ⊎mp→ mp (match)

On top of this we define simplification rules ⇒ for pattern problems.

{mp} ⊎ pp⇒ {mp′} ∪ pp if mp→ mp′ (simp-mp)

{⊥mp} ⊎ pp⇒ pp (remove-mp)

{∅} ⊎ pp⇒ ⊤pp (success)

57

A verified algorithm for deciding pattern completeness and related properties René Thiemann

Finally we provide rules ⇛ for modifying sets of pattern problems.

{pp} ⊎ P ⇛ {pp′} ∪ P if pp⇒ pp′ (simp-pp)

{∅} ⊎ P ⇛ ⊥P (failure)

{⊤pp} ⊎ P ⇛ P (remove-pp)

{pp} ⊎ P ⇛ {ppσx,c | c ∈ Cτ} ∪ P if mp ∈ pp, (x, f(. . .)) ∈ mp, and x ∈ Vτ (instantiate)

Here, Cτ is the set of constructors with target type τ and σx,c is a substitution which just replaces
x by c(x1, . . . , xn) where n is the arity of c and x1, . . . , xn are fresh and distinct variables. The
pattern problem ppσx,c is obtained from pp by changing every pair (t, ℓ) in every matching
problem of pp to (tσx,c, ℓ).

Clearly, (decompose) and (clash) correspond to a standard matching algorithm. Similarly,
(match) is standard for matching with linear lhss, but will cause problems in the non-linear case.
Nearly all of the other rules mainly correspond to the universal and existential quantification
that is done in the definition of solvability. The only exception is (instantiate). Here a matching
algorithm would detect a failure since a variable x is never matched by a non-variable term
f(. . .). However, since the x in our setting just represents an arbitrary constructor ground
term, we need to make a case analysis on the outermost constructor. This is done by replacing
x ∈ Vτ by all possible constructor ground terms of shape c(x1, . . . , xn) for all c ∈ Cτ .

The following theorem states that ⇛ can be used to decide linear pattern problems. Here,
⇛! is defined as reduction to normal form, i.e., P ⇛! P ′ iff P ⇛∗ P ′ ∧ ¬∃P ′′. P ′ ⇛ P ′′.

Theorem 7 (Decision Procedure for Solvability of Linear Pattern Problems).

• ⇛ is terminating.

• Whenever P ⇛! P ′ then P ′ ∈ {∅,⊥P }.
• Whenever P is linear and P ⇛ P ′ then P ′ is linear, and P is solvable iff P ′ is solvable.

• Whenever P is linear then P is solvable iff P ⇛! ∅.
So, solvability of linear pattern problems is decidable. Regarding the complexity, one can

prove an exponential upper bound on the number of ⇛-steps. However, there might be room
for improvement: for all examples we considered so far, there also is a strategy such that only
polynomially many ⇛-steps are required, e.g., by changing the order of variables on which
(instantiate) is applied.

Example 8. The algorithm validates that RN in Example 2 is pattern complete. In the execu-
tion of the algorithm we interpret sets as multisets.

P = { {{(even(y), even(0))}, {(even(y), even(s(0)))}, {(even(y), even(s(s(x))))}} }
⇛3 { {{(y, 0)}, {(y, s(0))}, {(y, s(s(x)))}} }
⇛ { {{(0, 0)}, {(0, s(0))}, {(0, s(s(x)))}}, {{(s(z), 0)}, {(s(z), s(0))}, {(s(z), s(s(x)))}} }
⇛6 { {∅,⊥mp,⊥mp}, {⊥mp, {(z, 0)}, {(z, s(x))}} }
⇛3 { {{(z, 0)}, {(z, s(x))}} }
⇛ { {{(0, 0)}, {(0, s(x))}}, {{(s(y), 0)}, {(s(y), s(x))}} }
⇛5 { {∅,⊥mp}, {⊥mp, ∅} }
⇛4 ∅

58

A verified algorithm for deciding pattern completeness and related properties René Thiemann

3 Pattern Completeness – The General Case

For achieving soundness for the non-linear case we have to modify the (match) rule.

Definition 9 (Match Rule for the General Case).

{(t, x)} ⊎mp→ mp if for all (t′, ℓ) ∈ mp, x does not occur ℓ (match’)

In the linear case the additional occurrence check in rule (match’) is always satisfied, so
we can still simulate the algorithm for the linear case with this modified rule. Soundness and
termination of ⇛ still are satisfied, even for non-linear inputs.

However, after the switch from rule (match) to (match’) it can happen that ⇛ gets stuck,
e.g., if there is a matching problem {(t, x), (t′, x)} for t ̸= t′. To treat these cases we have to add
further simplification rules. In order to do so, we need to distinguish between finite and infinite
types τ , i.e., whether the set T (C)τ is finite or infinite. To illustrate the problem, consider a
program with three left-hand sides: f(x, x, y), f(x, y, x), and f(y, x, x). If x is a variable of
a finite type that just allows two different values, such as the Booleans, then these left-hand
sides cover all cases. If the type has infinitely many values, such as lists, then the left-hand
sides do not suffice, indicating an unsolvable problem. So, we must be able to instantiate in
the finite-type case. However, we cannot allow an instantiation in the infinite-type case, since
otherwise the resulting inference rules would no longer be terminating.

As final preparation for the new inference rules we define (the only two) reasons on why two
terms differ. We say that terms t ̸= t′ clash if t|p = f(. . .) ̸= g(. . .) = t′|p with f ̸= g for some
shared position p of t and t′. The terms t ̸= t′ differ in variable y if t|p ̸= t′|p and y ∈ {t|p, t′|p}
for some shared position p.

Definition 10 (Inference Rules for General Pattern Problems). We take all rules of the linear
algorithm with the following modifications.

• Rule (match) is replaced by (match’).

• We add the following three rules to avoid to get stuck.

{(t, x), (t′, x)} ⊎mp→ ⊥mp if t and t′ clash (clash’)

{pp} ⊎ P ⇛ {ppσx,c | c ∈ Cτ} ∪ P (instantiate’)

if mp ∈ pp, {(t, y), (t′, y)} ⊆ mp, t and t′ differ in variable x ∈ Vτ , and τ is finite

{pp} ⊎ P ⇛ ⊥P if for each mp ∈ pp there are {(t, y), (t′, y)} ⊆ mp (failure’)

such that t and t′ differ in variable x ∈ Vτ and τ is infinite

Indeed, with these modifications, ⇛ cannot get stuck even for non-linear inputs.
We first remark that there is a different flavour of problems with non-linear matching prob-

lems of the form {(t, x), (t′, x)}. Clashing of t and t′ can always be resolved locally. If there
is a difference of a finite-type variable, this can also be handled immediately by (instantiate’).
However, differences of infinite-type variables can only be applied via (failure’) if indeed all
matching problems show such a difference. Note that it is unsound to turn (failure’) into a
local rule for matching problems, i.e., if we would make (failure’) similar to (clash’).

Overall, we arrive at a similar theorem to the linear case, though its proof is much more
evolved. It has been proven in Isabelle (2700 lines), based on IsaFoR1 and on a library on sorted
terms by Akihisa Yamada.

1http://cl-informatik.uibk.ac.at/isafor/

59

http://cl-informatik.uibk.ac.at/isafor/

A verified algorithm for deciding pattern completeness and related properties René Thiemann

Theorem 11 (Decision Procedure for Solvability of Pattern Problems).

• ⇛ is terminating.

• Whenever P ⇛! P ′ then P ′ ∈ {∅,⊥P }.

• Whenever P ⇛ P ′ then P is solvable iff P ′ is solvable.

• P is solvable iff P ⇛! ∅.

The formalization in Isabelle also contains a verified list-based implementation of the ab-
stract inference rules. It fixes a strategy where first ⇒-steps are applied exhaustively. Rules
(instantiate) and in particular (instantiate’) get applied as late as possible. However, this im-
plementation is not fully working, as it expects a function to compute whether a given type τ
is infinite or not, and we did not yet verify a suitable algorithm for this subtask.

Note that it is possible to extend ⇛ in a way that it provides a witness constructor ground
substitution in case a pattern problem is not solvable. To this end one has to store the sub-
stitutions that have been applied via the two rules for instantiation; and in case rule (failure’)
has been used, a final constructor-ground substitution can be generated by following the con-
struction in the soundness proof of that rule.

It remains open whether a similar syntax directed decision procedure for quasi-reducibility
can be designed, i.e., without an explicit enumeration of terms.

Acknowledgements We thank the anonymous reviewers for their helpful remarks and for
their references to related work.

References

[1] Takahito Aoto and Yoshihito Toyama. Ground confluence prover based on rewriting induction. In
Proc. FSCD 2016, volume 52 of LIPIcs, pages 33:1–33:12, 2016.

[2] Adel Bouhoula. Simultaneous checking of completeness and ground confluence for algebraic speci-
fications. ACM Trans. Comput. Log., 10(3):20:1–20:33, 2009.

[3] Adel Bouhoula and Florent Jacquemard. Sufficient completeness verification for conditional and
constrained TRS. J. Appl. Log., 10(1):127–143, 2012.

[4] Stephan Falke and Deepak Kapur. Rewriting induction + linear arithmetic = decision procedure.
In Proc. IJCAR 2012, volume 7364 of LNCS, pages 241–255, 2012.

[5] Deepak Kapur, Paliath Narendran, and Hantao Zhang. On sufficient-completeness and related
properties of term rewriting systems. Acta Informatica, 24(4):395–415, 1987.

[6] Cynthia Kop. Quasi-reductivity of logically constrained term rewriting systems. CoRR,
abs/1702.02397, 2017.

[7] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[8] Uday S. Reddy. Term rewriting induction. In Proc. CADE 1990, volume 449 of LNCS, pages
162–177, 1990.

60

Confluence Competition 2023

Rául Gutiérrez1, Aart Middeldorp2, Naoki Nishida3, and Teppei Saito4

1 Universidad Politécnica de Madrid, Madrid, Spain
2 Department of Computer Science, University of Innsbruck, Austria

3 Department of Computing and Software Systems, Nagoya University, Japan
4 School of Information Science, JAIST, Japan

The next few pages in these proceedings contain the descriptions of the tools participating in
the 12th Confluence Competition (CoCo 2023). CoCo is a yearly competition in which software
tools attempt to automatically (dis)prove confluence and related properties of rewrite systems
in a variety of formats. For a detailed description we refer to [1]. This year there were 15 tools
(listed in order of registration) participating in 10 categories (listed in order of first appearance
in CoCo):

TRS CTRS GCR UNR UNC NFP COM INF SRS CSR

ConfCSR ✓
Toma ✓
Hakusan ✓ ✓
CoLL ✓
CO3 ✓ ✓
NaTT ✓
CSI ✓ ✓ ✓ ✓ ✓
FORT-h ✓ ✓ ✓ ✓ ✓ ✓
FORTify ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

CONFident ✓ ✓ ✓ ✓
infChecker ✓
AGCP ✓
ACP ✓ ✓ ✓ ✓ ✓ ✓
nonreach ✓
CeTA ⋆ ⋆ ⋆ ⋆

New this year is that the certified categories have been disabled; tools producing certifiable
output in a specific category team up with a certifier and participate as combination in that
category. The certifiers in CoCo 2023 are CeTA and FORTify. The latter teams up with FORT-h.
The former with ACP, CSI and Hakusan in the SRS and TRS categories, with ACP in the COM
category, and with nonreach in the INF category.

The winning (for combined YES/NO answers) tools1 of CoCo 2022 participated as demon-
stration tools, to provide a benchmark to measure progress. The live run of CoCo 2023 on
StarExec [2] can be viewed at http://cocograph.uibk.ac.at/2023.html. Further information
about CoCo 2023, including a description of the categories and detailed results, can be obtained
from

http://project-coco.uibk.ac.at/2023/

1They are not listed in the table but see http://project-coco.uibk.ac.at/2022/results.php.

61

http://cocograph.uibk.ac.at/2023.html
http://project-coco.uibk.ac.at/2023/
http://project-coco.uibk.ac.at/2022/results.php

Confluence Competition 2023 CoCo SC

Acknowledgements The CoCo steering committee is grateful to Nao Hirokawa and Fabian
Mitterwallner for their support.

References

[1] Aart Middeldorp, Julian Nagele, and Kiraku Shintani. CoCo 2019: Report on the Eighth Con-
fluence Competition. International Journal on Software Tools for Technology Transfer, 2021.
doi: 10.1007/s10009-021-00620-4.

[2] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: A Cross-Community Infrastructure for
Logic Solving. In Proc. 7th International Joint Conference on Automated Reasoning, volume 8562
of LNCS (LNAI), pages 367–373, 2014. doi: 10.1007/978-3-319-08587-6 28.

62

https://doi.org/10.1007/s10009-021-00620-4
https://doi.org/10.1007/978-3-319-08587-6_28

CoCo 2023 Participant: ConfCSR

Filip Stevanovic and Fabian Mitterwallner

Department of Computer Science, University of Innsbruck, Austria
fil.stevanovic@gmail.com, fabian.mitterwallner@uibk.ac.at

ConfCSR is a tool for automatically (dis)proving confluence of context-sensitive rewrite sys-
tems (CSTRSs). It was developed as part of a bachelor project at the University of Innsbruck.
ConfCSR implements techniques described in [1], namely orthogonality and (non-)joinability of
extended µ-critical pairs. The latter also requires proving termination of the CSTRS, for which
an external termination tool such as AProVE2 [2] is used.

The procedure for determining joinability of µ-critical pairs searches for common reducts.
However, the extended µ-critical pairs also contain so called LHµ-critical pairs, which are ob-
tained from rules where some variables appear in both active and frozen positions. They take
the shape ℓ[x′]p ≈ r ⇐ x → x′, where ℓ → r is a rule of the CSTRS R and x is a variable
at an active position p in ℓ which also appears in a frozen position. Such a critical pair is
called joinable if ℓ[x′]pσ → · ← rσ for all substitutions where xσ → x′σ. Therefore checking
joinability cannot be done via a straight forward search. Instead ConfCSR replaces occurrences
of x′ and x by fresh constants d and c respectively, and checks if ℓ[x′]p{x′ 7→ d, x 7→ c} and
r{x 7→ c} are joinable with respect to the CSTRS R ∪ {c → d}. This criterion is sufficient to
check joinability but is not complete.

The source code is freely available at

https://github.com/F200907/ConfCSR

ConfCSR participates in the CSR category of CoCo 2023.

References

[1] Salvador Lucas, Miguel Vı́tores, and Raúl Gutiérrez. Proving and disproving confluence of context-
sensitive rewriting. Journal of Logical and Algebraic Methods in Programming, 126:100749, 2022.
doi: 10.1016/j.jlamp.2022.100749.

[2] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten
Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Ströder,
Stephanie Swiderski, and René Thiemann. Analyzing Program Termination and Complexity Auto-
matically with AProVE. Journal of Automated Reasoning, 58(1):3–31, 2017. doi: 10.1007/s10817-
016-9388-y.

63

https://github.com/F200907/ConfCSR
https://doi.org/10.1016/j.jlamp.2022.100749
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y

Toma 0.5: An Equational Theorem Prover

Teppei Saito and Nao Hirokawa

JAIST, Japan

Toma is an automatic theorem prover for first-order equational systems, freely available at
https://www.jaist.ac.jp/project/maxcomp/. The typical usage is: toma --inf <file>,
where <file> is an infeasibility problem in the CoCo format [5]. The tool outputs YES if
infeasibility of the problem is shown, and MAYBE otherwise. It also accepts the TPTP CNF
format [6].

Toma proves infeasibility as follows: By using the split-if encoding [2] a given infeasibility
problem is transformed into a word problem of form E ⊢ T ̸≈ F whose validity entails infeasibility
of the original problem. The word problem is solved by a new variant of maximal (ordered)
completion [7, 3]:

1. Given an equational system E1, we construct a lexicographic path order ≻lpo that maxi-
mizes reducibility of the ordered rewrite system (E1,≻lpo) [7].

2. Using the order, we run ordered completion [1] on E1. Here we do not employ the deduce
rule (critical pair generation). Such a run eventually ends with an inter-reduced version
(E2,≻lpo) of (E1,≻lpo).

3. The tool checks ground-completeness of the ordered rewrite system (E2,≻lpo) by Martin
and Nipkow’s method [4].

(a) If (E2,≻lpo) is ground-complete but T and F are not joinable, the tool outputs YES
and terminates.

(b) If T and F are joinable in (E2,≻lpo), the tool outputs MAYBE and terminates.

(c) Otherwise, there exists at least one equation that is valid in E2 but not ground-
joinable in (E2,≻lpo). Let E3 be a set of such equations. Setting E1 := E2 ∪ E3, the
tool goes back to the first step.

Compared to the last year’s version, the performance has been improved.

References

[1] L. Bachmair, N. Dershowitz and D. A. Plaisted. Completion without Failure. Resolution of
Equations in Algebraic Structures vol. 2: Rewriting , pp. 1–30, Academic Press, 1989.

[2] K. Claessen and N. Smallbone. Efficient Encodings of First-Order Horn Formulas in Equational
Logic. Proc. 9th IJCAR, LNCS 10900, pp. 388–404, 2018.

[3] N. Hirokawa. Completion and Reduction Orders. Proc. 6th FSCD, LIPIcs, vol. 195, pp. 2:1-2:9,
2021.

[4] U. Martin and T. Nipkow. Ordered Rewriting and Confluence. Proc. 10th CADE, LNCS 499,
pp. 366–380, 1990.

[5] A. Middeldorp, J. Nagele, and K. Shintani. Confluence Competition 2019. Proc. 25th TACAS,
LNCS 11429, pp. 25–40, 2019.

[6] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: From CNF to TH0,
TPTP v6.4.0. Journal of Automated Reasoning, vol. 59, no. 4, pp. 483–502, 2017.

[7] S. Winkler and G. Moser. Mædmax: A Maximal Ordered Completion Tool. Proc. 9th IJCAR,
LNCS 10900, pp. 472–480, 2018.

64

https://www.jaist.ac.jp/project/maxcomp/

Hakusan 0.8: A Confluence Tool

Kiraku Shintani and Nao Hirokawa

JAIST, Japan
s1820017@jaist.ac.jp, hirokawa@jaist.ac.jp

Hakusan (http://www.jaist.ac.jp/project/saigawa/) is a confluence tool for left-linear
term rewrite systems (TRSs). It analyzes confluence by using the two compositional confluence
criteria [2, Theorems 31 and 38] that originate from rule labeling and critical pair systems. This
version supports two new features. One is certificate outputs for rule labeling [2, Theorem 28]
which are verifiable by CeTA [3], and the other is the following reduction method for confluence
problems (see the extended version of [2]). Let R↾C = {ℓ→ r ∈ R | Fun(ℓ) ⊆ Fun(C)}.
Theorem 1. Let C be a subsystem of a left-linear TRS R. Suppose R←−7 [−⋊ ϵ−→R ⊆ ←→∗

C and
R↾C ⊆ →∗

C. The TRS R is confluent if and only if C is confluent.

To demonstrate the reduction method, we show the confluence of the left-linear TRS R:
1 : x+ 0→ x 3: 0+ y → y 5: s(x) + y → s(x+ y)

2 : x× 0→ 0 4: s(x)× 0→ 0 6: s(x)× y → (x× y) + y

There are four non-trivial parallel critical pairs and they admit the following diagrams:

s(x) + 0

s(x) s(x+ 0)

= ϵ

1

s(x) + 0

s(x+ 0) s(x)

= ϵ

1

s(x)× 0

0 (x× 0) + 0

x× 0

= ϵ

12

s(x)× 0

(x× 0) + 0 0

x× 0

= ϵ

1 2

(i) Let C = {1, 2, 3}. We have R←−7 [−⋊ ϵ−→R ⊆ ←→∗
C . As Fun(C) = {0,+,×}, the inclusion

R↾C = {1, 2, 3} ⊆ →∗
C holds. According to Theorem 1, the confluence problem of R is

reduced to that of C.
(ii) Since C only admits a trivial parallel critical pair, it is closed by the empty system ∅.

Moreover, the inclusion C↾∅ = ∅ ⊆ →∗
∅ holds. Hence, by Theorem 1 confluence of C is

reduced to that of the empty system ∅.

(iii) Since the empty system ∅ is trivially confluent, we conclude that R is confluent.

As a final remark, our tool employs the SMT solver Z3 [1] and the termination tool NaTT [4]
for automating the compositional confluence criteria and the reduction method.

References

[1] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proc. 12th TACAS, volume 4963
of LNCS, pages 337–340, 2008.

[2] K. Shintani and N. Hirokawa. Compositional Confluence Criteria. In Proc. 7th FSCD, volume 228
of LIPIcs, pages 28:1–28:19, 2022. The extended version, submitted to a journal, is available at:
doi: 10.48550/arXiv.2303.03906

[3] R. Thiemann and C. Sternagel. Certification of Termination Proofs using CeTA. In Proc. 22nd
TPHOLs, volume 5674 of LNCS, pages 452–468, 2009.

[4] A. Yamada and K. Kusakari and T. Sakabe. Nagoya Termination Tool. In Proc. 25th RTA, volume
8560 of LNCS, pages 446–475, 2014.

65

http://www.jaist.ac.jp/project/saigawa/
https://doi.org/10.48550/arXiv.2303.03906

CoLL 1.6.1: A Commutation Tool

Kiraku Shintani

JAIST, Japan
s1820017@jaist.ac.jp

CoLL (version 1.6.1) is a tool for automatically proving commutation of left-linear term
rewrite systems (TRSs). The tool, written in OCaml, is freely available at:

http://www.jaist.ac.jp/project/saigawa/coll/

The typical usage is: coll <file>. Here the input file is written in the commutation problem
format [4]. The tool outputs YES if commutation of the input TRSs is proved, NO if non-
commutation is shown, and MAYBE if the tool does not reach any conclusion.

In this tool commutation of left-linear TRSs is shown by Hindley’s Commutation Theorem:

Theorem 1 ([2, 7]). ARSs A = ⟨A, {→α}α∈I⟩ and B = ⟨A, {→β}β∈J⟩ commute if →α and
→β commute for all α ∈ I and β ∈ J .

Here indexes are interpreted as subsystems of the input TRSs. For every pair of subsystems
CoLL proves its commutation property, employing the following criteria: simultaneous closed-
ness [5], parallel closedness [9], parallel upside closedness and outside closedness [6], rule labeling
with weight function [10, 1], and Church–Rosser modulo A/C [3]. A detailed description of CoLL
can be found in [8].

References

[1] T. Aoto. Automated confluence proof by decreasing diagrams based on rule-labelling. In Proc.
21st RTA, volume 6 of LIPIcs, pages 7–16, 2010.

[2] J. R. Hindley. The Church-Rosser Property and a Result in Combinatory Logic. PhD thesis,
University of Newcastle-upon-Tyne, 1964.

[3] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM
Journal on Computing, 15(4):1155–1194, 1986.

[4] A. Middeldorp, J. Nagele, and K. Shintani. CoCo 2019: Report on the eighth confluence compe-
tition. International Journal on Software Tools for Technology Transfer, 23(6):905–916, 2021.

[5] S. Okui. Simultaneous critical pairs and Church–Rosser property. In Proc. 9th RTA, volume 1379
of LNCS, pages 2–16, 1998.

[6] M. Oyamaguchi and Y. Ohta. On the open problems concerning Church–Rosser of left-linear term
rewriting systems. IEICE Transactions on Information and Systems, 87(2):290–298, 2004.

[7] B. K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM,
20:160–187, 1973.

[8] K. Shintani and N. Hirokawa. CoLL: A confluence tool for left-linear term rewrite systems. In
Proc. 25th CADE, volume 9195 of LNAI, pages 127–136, 2015.

[9] Y. Toyama. On the Church–Rosser property of term rewriting systems. NTT ECL Technical
Report, No.17672, NTT, 1981.

[10] V. van Oostrom. Confluence by decreasing diagrams converted. In A. Voronkov, editor, Proc. 19th
RTA, volume 5117 of LNCS, pages 306–320, 2008.

66

http://www.jaist.ac.jp/project/saigawa/coll/

CO3 (Version 2.4)

Naoki Nishida, Misaki Kojima, and Ayuka Matsumi

Nagoya University, Nagoya, Japan
{nishida@, k-misaki@trs.css., matsumi@trs.css.}i.nagoya-u.ac.jp

CO3, a converter for proving confluence of conditional TRSs,1 tries to prove confluence
of conditional term rewrite systems (CTRSs, for short) by using a transformational approach
(cf. [7]). The tool first transforms a given weakly-left-linear (WLL, for short) 3-DCTRS into
an unconditional term rewrite system (TRS, for short) by using Uconf [3], a variant of the
unraveling U [9], and then verifies confluence of the transformed TRS by using the following
theorem: A 3-DCTRS R is confluent if R is WLL and Uconf (R) is confluent [2, 3]. The tool
is very efficient because of very simple and lightweight functions to verify properties such as
confluence and termination of TRSs.

Since version 2.0, a narrowing-tree-based approach [8, 4] to prove infeasibility of a condition
w.r.t. a CTRS has been implemented [5]. The approach is applicable to syntactically deter-
ministic CTRSs that are operationally terminating and ultra-right-linear w.r.t. the optimized
unraveling. To prove infeasibility of a condition c, the tool first prove confluence, and then
linearizes c if failed to prove confluence; then, the tool computes and simplifies a narrowing
tree for c, and examines the emptiness of the narrowing tree. Since version 2.2, CO3 accepts
both join and semi-equational CTRSs, and transforms them into equivalent DCTRSs to prove
confluence or infeasibility [6].

This version has an improvement on the removal of valid conditions: For a conditional rule
ℓ → r ⇐ c, s ↠ t, c′ ∈ R, if there exist an unconditional rule ℓ′ → r′ ∈ R and a substitution
θ such that ℓ′θ = s and r′θ = t, the condition s ↠ t is dropped from the conditional part,
replacing the rule by ℓ→ r ⇐ c, c′. In addition, we slightly strengthen the function to disprove
confluence: In proving strong irreducibility of a term t, if a subterm u of t is unifiable with the
left-hand side of a rule ℓ→ r ⇐ c by means of an mgu θ, then we check infeasibility of cθ; if cθ
is infeaible, then the rule is considered to be inapplicable to u.

References

[1] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving dependency
pairs. J. Autom. Reason., 37(3):155–203, 2006.

[2] K. Gmeiner, B. Gramlich, and F. Schernhammer. On soundness conditions for unraveling deter-
ministic conditional rewrite systems. In Proc. RTA 2012, vol. 15 of LIPIcs, pp. 193–208, 2012.

[3] K. Gmeiner, N. Nishida, and B. Gramlich. Proving confluence of conditional term rewriting systems
via unravelings. In Proc. IWC 2013, pp. 35–39, 2013.

[4] Y. Maeda, N. Nishida, M. Sakai, and T. Kobayashi. Extending narrowing trees to basic narrowing
in term rewriting. IEICE Tech. Rep. SS2018-39, Vol. 118, No. 385, pp. 73–78, 2019, in Japanese.

[5] N. Nishida. CO3 (Version 2.1). In Proc. IWC 2020, page 67, 2020.

[6] N. Nishida. CO3 (Version 2.2). In Proc. IWC 2021, page 61, 2021.

[7] N. Nishida, T. Kuroda, and K. Gmeiner. CO3 (Version 1.3). In Proc. IWC 2016, p. 74, 2016.

[8] N. Nishida and Y. Maeda. Narrowing trees for syntactically deterministic conditional term rewriting
systems. In Proc. FSCD 2018, vol. 108 of LIPIcs, pp. 26:1–26:20, 2018.

[9] E. Ohlebusch. Termination of logic programs: Transformational methods revisited. Appl. Algebra
Eng. Commun. Comput., 12(1/2):73–116, 2001.

1http://www.trs.css.i.nagoya-u.ac.jp/co3/

67

http://www.trs.css.i.nagoya-u.ac.jp/co3/

CoCo 2023 Participant: CSI 1.2.7

Fabian Mitterwallner and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
fabian.mitterwallner@uibk.ac.at, aart.middeldorp@uibk.ac.at

CSI is an automatic tool for (dis)proving confluence and related properties of first-order term
rewrite systems (TRSs). It has been in development since 2010. Its name is derived from the
Confluence of the rivers Sill and Inn in Innsbruck. The tool is available from

http://cl-informatik.uibk.ac.at/software/csi

under a LGPLv3 license. A detailed description of CSI can be found in [4]. Some of the
implemented techniques are described in [1,3,7]. CSI can also produce certificates for confluence
results, which are checked by CeTA. Compared to last year’s version, CSI 1.2.7 can now produce
certificates containing proofs based on almost development-closed critical pairs, which is a
sufficient condition for confluence of left-linear TRSs [5]. This extends the previous certification
of development-closed critical pairs. These certificates can be checked by the latest version of
CeTA [6], due to the formalization and certification efforts by Christina Kohl, parts of which are
described in [2].

CSI participates in the following CoCo 2023 categories: NFP, SRS, TRS, UNC, and UNR.
Additionally, it participates together with CeTA in the TRS category providing certified YES/NO
answers.

References

[1] Bertram Felgenhauer. Confluence for Term Rewriting: Theory and Automation. PhD thesis,
University of Innsbruck, 2015.

[2] Christina Kohl and Aart Middeldorp. Formalizing almost development closed critical pairs. In Proc.
14th International Conference on Interactive Theorem Proving, pages 38:1–38:8, 2023. doi: 10.4230/
LIPIcs.ITP.2023.38.

[3] Julian Nagele. Mechanizing Confluence: Automated and Certified Analysis of First- and Higher-Order
Rewrite Systems. PhD thesis, University of Innsbruck, 2017.

[4] Julian Nagele, Bertram Felgenhauer, and Aart Middeldorp. CSI: New Evidence – A Progress Report.
In Proc. 26th International Conference on Automated Deduction, volume 10395 of Lecture Notes in
Artificial Intelligence, pages 385–397, 2017. doi: 10.1007/978-3-319-63046-5_24.

[5] Vincent van Oostrom. Developing Developments. Theoretical Computer Science, 175(1):159–181,
1997. doi: 10.1016/S0304-3975(96)00173-9.

[6] René Thiemann, Christina Kohl, and Dohan Kim. CoCo 2023 Participant: CeTA 2.45. In Proc. 12th
International Workshop on Confluence, 2023. This volume.

[7] Harald Zankl. Challenges in Automation of Rewriting. Habilitation thesis, University of Innsbruck,
2014.

68

http://cl-informatik.uibk.ac.at/software/csi
http://dx.doi.org/10.4230/LIPIcs.ITP.2023.38
http://dx.doi.org/10.4230/LIPIcs.ITP.2023.38
http://dx.doi.org/10.1007/978-3-319-63046-5_24
http://dx.doi.org/10.1016/S0304-3975(96)00173-9

CoCo 2023 Participant: FORT-h 2.0∗

Fabian Mitterwallner and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
fabian.mitterwallner@uibk.ac.at, aart.middeldorp@uibk.ac.at

The first-order theory of rewriting is a decidable theory for finite left-linear right-ground
rewrite systems. The decision procedure goes back to Dauchet and Tison [1]. FORT-h is a
reimplementation of the tool FORT [4], but is based on a new variant of the decision procedure,
described in [2], for the larger class of linear variable-separated rewrite systems. This variant
supports a more expressive theory and is based on anchored ground tree transducers. More
importantly, it can produce certificates for the YES/NO answers. These certificates can then
be verified by FORTify, an independent Haskell program that is code-generated from the
formalization of the decision procedure in the proof assistant Isabelle/HOL.

A command-line version of FORT-h 2.0 can be downloaded from

http://fortissimo.uibk.ac.at/fort(ify)/

FORT-h participates in the following CoCo 2023 categories: COM, GCR, NFP, TRS, UNC, and
UNR. In all six categories it additionally participates together with FORTify [3] to produce
certified YES/NO answers.

References

[1] Max Dauchet and Sophie Tison. The Theory of Ground Rewrite Systems is Decidable. In Proc. 5th
IEEE Symposium on Logic in Computer Science, pages 242–248, 1990. doi: 10.1109/LICS.1990.113750.

[2] Aart Middeldorp, Alexander Lochmann, and Fabian Mitterwallner. First-Order Theory of Rewriting
for Linear Variable-Separated Rewrite Systems: Automation, Formalization, Certification. Journal
of Automated Reasoning, 67(14):1–76, 2023. doi: 10.1007/s10817-023-09661-7.

[3] Fabian Mitterwallner and Aart Middeldorp. CoCo 2023 Participant: FORTify 2.0. In Proc. 12th
International Workshop on Confluence, 2023. This volume.

[4] Franziska Rapp and Aart Middeldorp. FORT 2.0. In Proc. 9th International Joint Conference on
Automated Reasoning, volume 10900 of LNCS (LNAI), pages 81–88, 2018. doi: 10.1007/978-3-319-
94205-6 6.

∗Supported by FWF (Austrian Science Fund) project P30301.

69

http://fortissimo.uibk.ac.at/fort(ify)/
https://doi.org/10.1109/LICS.1990.113750
https://doi.org/10.1007/s10817-023-09661-7
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1007/978-3-319-94205-6_6

CoCo 2023 Participant: FORTify 2.0

Fabian Mitterwallner and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
fabian.mitterwallner@uibk.ac.at, aart.middeldorp@uibk.ac.at

The first-order theory of rewriting is a decidable theory for linear variable-separated rewrite
systems. The decision procedure goes back to Dauchet and Tison [1]. In this theory confluence-
related properties on ground terms are easily expressible. An extension of the theory to multiple
rewrite systems, as well as the decision procedure, has been formalized in Isabelle/HOL [2–4].
The code generation facilities of Isabelle then give rise to the certifier FORTify which checks
certificate constructed by FORT-h [6]. FORTify takes as input an answer (YES/NO), a formula,
a list of TRSs, and a certificate proving that the formula holds (does not hold) for the given
TRSs. It then checks the integrity and validity of the certificate. A command-line version of the
tool can be downloaded from

https://fortissimo.uibk.ac.at/fort(ify)/

We refer to the recent article [5] for a detailed description of FORTify.

This year FORTify participates, together with FORT-h, in the following CoCo 2023 categories:
COM, GCR, NFP, TRS, UNC, and UNR.

References

[1] Max Dauchet and Sophie Tison. The Theory of Ground Rewrite Systems is Decidable. In Proc. 5th
IEEE Symposium on Logic in Computer Science, pages 242–248, 1990. doi: 10.1109/LICS.1990.113750.

[2] Alexander Lochmann. Reducing Rewrite Properties to Properties on Ground Terms, 2022. https:
//isa-afp.org/entries/Rewrite_Properties_Reduction.html, Formal proof development.

[3] Alexander Lochmann and Bertram Felgenhauer. First-Order Theory of Rewriting. Archive of
Formal Proofs, 2022. https://isa-afp.org/entries/FO_Theory_Rewriting.html, Formal proof
development.

[4] Alexander Lochmann, Bertram Felgenhauer, Christian Sternagel, René Thiemann, and Thomas
Sternagel. Regular Tree Relations. Archive of Formal Proofs, 2021. https://www.isa-afp.org/

entries/Regular_Tree_Relations.html, Formal proof development.

[5] Aart Middeldorp, Alexander Lochmann, and Fabian Mitterwallner. First-Order Theory of Rewriting
for Linear Variable-Separated Rewrite Systems: Automation, Formalization, Certification. Journal
of Automated Reasoning, 67(14):1–76, 2023. doi: 10.1007/s10817-023-09661-7.

[6] Fabian Mitterwallner and Aart Middeldorp. CoCo 2023 Participant: FORT-h 2.0. In Proc. 12th
International Workshop on Confluence, 2023. This volume.

70

https://fortissimo.uibk.ac.at/fort(ify)/
https://doi.org/10.1109/LICS.1990.113750
https://isa-afp.org/entries/Rewrite_Properties_Reduction.html
https://isa-afp.org/entries/Rewrite_Properties_Reduction.html
https://isa-afp.org/entries/FO_Theory_Rewriting.html
https://www.isa-afp.org/entries/Regular_Tree_Relations.html
https://www.isa-afp.org/entries/Regular_Tree_Relations.html
https://doi.org/10.1007/s10817-023-09661-7

CONFident at the 2023 Confluence Competition∗

Miguel Vı́tores2, Raúl Gutiérrez1, and Salvador Lucas2

1 Universidad Politécnica de Madrid, Madrid, Spain
r.gutierrez@upm.es

2 VRAIN, Universitat Politècnica de València, Valencia, Spain
mvitvic@posgrado.upv.es

slucas@dsic.upv.es

CONFident 2.0 is a tool which is able to prove confluence of TRSs, CS-TRSs, CTRSs and
CS-CTRSs. The tool is available here:

http://zenon.dsic.upv.es/confident/.

It is written in Haskell implementing the Confluence Framework:

• we consider two types of problems: confluence problems and joinability problems. Conflu-
ence problems encapsulate the different variants of rewrite systems. Joinability problems
encapsulate any possible type of critical pair generated by rewrite systems.

• processors are partial functions that are applied to problems. Our processors encapsulate
techniques for simplification, modular decomposition, problem transformation and direct
confluence/joinability checks.

We implement these processors using the logical approach presented in [1, 3, 5] and mecha-
nizing them by external tools like MU-TERM [3], infChecker [1], AGES [2], Prover9 and Mace4 [7]
and Barcelogic1. Latest description of the tool can be found in [4].

References

[1] R. Gutiérrez and S. Lucas. Automatically Proving and Disproving Feasibility Conditions. In
N. Peltier and V. Sofronie-Stokkermans, editor, Proc. of IJCAR’2020, LNCS 12167:416–435.
Springer, 2020.

[2] R. Gutiérrez and S. Lucas. Automatic Generation of Logical Models with AGES. In CADE 2019:
Automated Deduction - CADE 27, LNCS 11716:287:299. Springer, 2019.

[3] R. Gutiérrez and S. Lucas. MU-TERM: Verify Termination Properties Automatically (System
Description). In N. Peltier and V. Sofronie-Stokkermans, editor, Proc. of IJCAR’2020, LNCS
12167:436–447. Springer, 2020.

[4] R. Gutiérrez, M. Vı́tores and S. Lucas. Confluence Framework: Proving Confluence with CONFi-
dent. In A. Villanueva, editor, Proc. of LOPSTR’2022, LNCS 13474:24–43. Springer, 2022.

[5] S. Lucas. Proving semantic properties as first-order satisfiability. Artificial Intelligence 277, paper
103174, 24 pages, 2019.

[6] S. Lucas and R. Gutiérrez. Use of Logical Models for Proving Infeasibility in Term Rewriting.
Information Processing Letters, 136:90–95, 2018.

[7] W. McCune. Prover9 and Mace4. [online]. Available at https://www.cs.unm.edu/~mccune/mace4/.

∗Partially supported by grants PID2021-122830OB-C42 and PID2021-122830OB-C44 funded by
MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” and by the grant
CIPROM/2022/6 funded by Generalitat Valenciana.

1https://barcelogic.com/

71

http://zenon.dsic.upv.es/confident/
https://www.cs.unm.edu/~mccune/mace4/

infChecker at the 2023 Confluence Competition∗

Raúl Gutiérrez1, Salvador Lucas2, and Miguel Vı́tores2

1 Universidad Politécnica de Madrid, Madrid, Spain
r.gutierrez@upm.es

2 VRAIN, Universitat Politècnica de València, Valencia, Spain
slucas@dsic.upv.es

mvitvic@posgrado.upv.es

infChecker is a tool for checking (in)feasibility of sequences of rewrite and relations with
respect to first-order theories, called goals [3]. infChecker participates in the INF category
at the Confluence Competition but it is also used as as a external tool in CONFident, which
participates in several categories in the Competition.

The tool is available here:

http://zenon.dsic.upv.es/infChecker/.

It is written in Haskell implementing the Feasibility Framework:

• we consider f-problems that are form by a theory and and goal. In the competition, goals
only contain reachability conditions.

• processors are partial functions that are applied to problems. Our processors encapsulate
techniques for simplification, splitting, satisfiability and provability.

Some processors are mechanized using external tools like AGES [2], Prover9 and Mace4 [4].
Latest description of the tool can be found in [1].

References

[1] R. Gutiérrez and S. Lucas. Automatically Proving and Disproving Feasibility Conditions. In
N. Peltier and V. Sofronie-Stokkermans, editor, Proc. of IJCAR’2020, LNCS 12167:416–435.
Springer, 2020.

[2] R. Gutiérrez and S. Lucas. Automatic Generation of Logical Models with AGES. In CADE 2019:
Automated Deduction - CADE 27, LNCS 11716:287:299. Springer, 2019.

[3] S. Lucas and R. Gutiérrez. Use of Logical Models for Proving Infeasibility in Term Rewriting.
Information Processing Letters, 136:90–95, 2018.

[4] W. McCune. Prover9 and Mace4. [online]. Available at https://www.cs.unm.edu/~mccune/mace4/.

∗Partially supported by grants PID2021-122830OB-C42 and PID2021-122830OB-C44 funded by
MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” and by the grant
CIPROM/2022/6 funded by Generalitat Valenciana.

72

http://zenon.dsic.upv.es/infChecker/
https://www.cs.unm.edu/~mccune/mace4/

AGCP: System Description for CoCo 2023

Takahito Aoto

Institute of Science and Technology, Niigata University
aoto@ie.niigata-u.ac.jp

AGCP (Automated Groud Confluence Prover) [1] is a tool for proving ground confluence of
many-sorted term rewriting systems. AGCP is written in Standard ML of New Jersey (SML/NJ).
AGCP proves ground confluence of many-sorted term rewriting systems based on two ingredients.
One ingredient is to divide the ground confluence problem of a many-sorted term rewriting
system R into that of S ⊆ R and the inductive validity problem of equations u ≈ v w.r.t. S
for each u → r ∈ R \ S. Here, an equation u ≈ v is inductively valid w.r.t. S if all its ground

instances uσ ≈ vσ is valid w.r.t. S, i.e. uσ ∗↔S vσ. Another ingredient is to prove ground
confluence of a many-sorted term rewriting system via the bounded ground convertibility of
the critical pairs. Here, an equation u ≈ v is said to be bounded ground convertibile w.r.t. a
quasi-order ≿ if uθg

∗←→
≿ R vθg for any its ground instance uσg ≈ vσg, where x

∗←→
≿

y iff there

exists x = x0 ↔ · · · ↔ xn = y such that x ≿ xi or y ≿ xi for every xi.
Rewriting induction [3] is a well-known method for proving inductive validity of many-

sorted term rewriting systems. In [1], an extension of rewriting induction to prove bounded
ground convertibility of the equations has been reported. Namely, for a reduction quasi-order
≿ and a quasi-reducible many-sorted term rewriting system R such that R ⊆ ≻, the extension
proves bounded ground convertibility of the input equations w.r.t. ≿. The extension not only
allows to deal with non-orientable equations but also with many-sorted TRSs having non-free
constructors. Several methods that add wider flexibility to the this approach are given in
[2]: when suitable rules are not presented in the input system, additional rewrite rules are
constructed that supplement or replace existing rules in order to obtain a set of rules that
is adequate for applying rewriting induction; and an extension of the system of [2] is used if
if the input system contains non-orientable constructor rules. AGCP uses these extension of
the rewriting induction to prove not only inductive validity of equations but also the bounded
ground convertibility of the critical pairs. Finally, some methods to deal with disproving ground
confluence are added as reported in [2].

No new ground (non-)confluence criterion has been incorporated from the one submitted
for CoCo 2022.

References

[1] T. Aoto and Y. Toyama. Ground confluence prover based on rewriting induction. In Proc. of 1st
FSCD, volume 52 of LIPIcs, pages 33:1–33:12. Schloss Dagstuhl, 2016.

[2] T. Aoto, Y. Toyama and Y. Kimura. Improving Rewriting Induction Approach for Proving Ground
Confluence. In Proc. of 2nd FSCD, volume 84 of LIPIcs, pages 7:1–7:18. Schloss Dagstuhl, 2017.

[3] U.S. Reddy. Term rewriting induction. In Proc. of CADE-10, volume 449 of LNAI, pages 162–177.
Springer-Verlag, 1990.

73

ACP: System Description for CoCo 2023

Takahito Aoto

Institute of Science and Technology, Niigata University
aoto@ie.niigata-u.ac.jp

A primary functionality of ACP is proving confluence (CR) of term rewriting systems
(TRSs). ACP integrates multiple direct criteria for guaranteeing confluence of TRSs. It also
incorporates divide–and–conquer criteria by which confluence or non-confluence of TRSs can
be inferred from those of their components. Several methods for disproving confluence are also
employed. For some criteria, it supports generation of proofs in CPF format that can be cer-
tified by certifiers. The internal structure of the prover is kept simple and is mostly inherited
from the version 0.11a, which has been described in [3]. It also deal with confluence of oriented
conditional term rewriting systems. Besides confluence, ACP supports proving the UNC prop-
erty (unique normal form property w.r.t. conversion) and the commutation property of term
rewriting systems. The ingredients of the former property have been appeared in [2, 5]. Our
(dis)proofs of commutation are based on a development closed criterion [6] and a simple search
for counter examples. In this year, we newly participates to the UNR category; some methods
for (dis)proving the UNR property employed in our prover are described in [4]. We have also
added the facility for generating some proofs in CPF format in commutativity (dis)proving.

ACP is written in Standard ML of New Jersey (SML/NJ) and the source code is also available
from [1]. It uses a SAT prover such asMiniSAT and an SMT prover YICES as external provers. It
internally contains an automated (relative) termination prover for TRSs but external (relative)
termination provers can be substituted optionally. Users can specify criteria to be used so that
each criterion or any combination of them can be tested. Several levels of verbosity are available
for the output so that users can investigate details of the employed approximations for each
criterion or can get only the final result of prover’s attempt.

References

[1] ACP (Automated Confluence Prover). http://www.nue.ie.niigata-u.ac.jp/tools/acp/.

[2] T. Aoto and Y. Toyama. Automated proofs of unique normal forms w.r.t. conversion for term
rewriting systems. In Proc. of 12th FroCoS, volume 11715 of LNAI, pages 330–347. Springer-Verlag,
2019.

[3] T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting system automatically.
In Proc. of 20th RTA, volume 5595 of LNCS, pages 93–102. Springer-Verlag, 2009.

[4] K. Okamoto, A Method for Automatically Verifying Unique Normal Form Property w.r.t. Reduc-
tion. Bachlor’s thesis, Niigata University, 2020.

[5] M. Yamaguchi and T. Aoto, A fast decision procedure for uniqueness of normal forms w.r.t.
conversion of shallow term rewriting systems. In Proc. of 5th FSCD, volume 167 of LIPIcs, pages
9:1–9:23. Schloss Dagstuhl, 2020.

[6] J. Yoshida, T. Aoto, and Y. Toyama. Automating confluence check of term rewriting systems.
Computer Software, 26(2):76–92, 2009.

74

CoCo 2023 Participant: nonreach 1.2

Florian Meßner

Independent Researcher, Innsbruck, Austria florian.messner@outlook.com

The tool nonreach is an automated, efficient tool to check infeasibility with respect to ori-
ented conditional term rewrite systems (CTRSs). The Haskell source code can be obtained
from a public git repository hosted on bitbucket :

https://bitbucket.org/fmessner/nonreach

Given a CTRS (or a TRS) and one or more infeasibility problems, nonreach uses a
combination of decomposition, based on narrowing (with some heuristics) and proving root-
nonreachability [4], and fast checks, based on etcap [5] and the inductive symbol transition
graph [4].

These methods are applied alternately until nonreach either obtains infeasibility (by simpli-
fying the tree to False), finds a satisfying substitution, or reaches a user-defined threshold of
iterations (and concludes MAYBE).

For more details regarding the implementation and usage of nonreach, I refer to the tool
demonstration paper published in TACAS 2019 [1] and my master thesis [2].

I previously participated with nonreach in the INF categories of CoCo 2019 and CoCo 2020
where it earned the second and third place respectively. Additionally, in 2020 the participant
ConCon [3] used nonreach as an external tool and earned the second place in the INF category,
as well as the first place in both the CTRS and CPF-CTRS categories.

Compared to the version participating in CoCo 2020, the new version nonreach 1.2 is mainly
a refactoring release. However, the new competition rules of CoCo 2023 allow me to showcase
the certified results of nonreach by running it together with CeTA [6].

References

[1] Florian Meßner and Christian Sternagel. nonreach - A tool for nonreachability analysis. In Proc.
25th TACAS, pages 337–343, 2019. doi:10.1007/978-3-030-17462-0_19.

[2] Florian Meßner. Automated Conditional Nonreachability Master Thesis, University of Innsbruck,
2020 https://diglib.uibk.ac.at/ulbtirolhs/content/titleinfo/5489915.

[3] Christian Sternagel. CoCo 2020 Participant: ConCon 1.10 In Proc. 9th IWC, page 65, 2020.
http://iwc2020.cic.unb.br/iwc2020_proceedings.pdf.

[4] Christian Sternagel and Akihisa Yamada. Reachability analysis for termination and confluence of
rewriting. In Proc. 25th TACAS, pages 262–278, 2019. doi:10.1007/978-3-030-17462-0_15.

[5] René Thiemann and Christian Sternagel. Certification of Termination Proofs using CeTA. In Proc.
22nd International Conference on Theorem Proving in Higher Order Logics, volume 5674 of LNCS,
pages 452–468. Springer, 2009. doi:10.1007/978-3-642-03359-9_31.

[6] Christina Kohl, René Thiemann, and Aart Middeldorp CoCo 2022 Participant: CeTA 2.42 In Proc.
11th IWC, page 62, 2022. http://cl-informatik.uibk.ac.at/iwc/2022/proceedings.pdf.

75

https://bitbucket.org/fmessner/nonreach
http://dx.doi.org/10.1007/978-3-030-17462-0_19
https://diglib.uibk.ac.at/ulbtirolhs/content/titleinfo/5489915
http://iwc2020.cic.unb.br/iwc2020_proceedings.pdf
http://dx.doi.org/10.1007/978-3-030-17462-0_15
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://cl-informatik.uibk.ac.at/iwc/2022/proceedings.pdf

CoCo 2023 Participant: CeTA 2.45

René Thiemann, Christina Kohl, and Dohan Kim

Department of Computer Science, University of Innsbruck, Austria

The tool CeTA [4] is a certifier for, among other properties, (non-)confluence of term rewrite
systems with and without conditions. Its soundness is proven as part of the formal proof library
IsaFoR, the Isabelle Formalization of Rewriting. Below, we present the relevant changes from
last year’s version (2.42) to this year’s version (2.45). For a complete reference of supported
techniques we refer to the certification problem format (CPF) and the IsaFoR/CeTA website:

http://cl-informatik.uibk.ac.at/isafor/

The development closedness criterion for confluence of left-linear TRSs has now been
extended to almost development closed critical pairs, allowing a weaker joining condition for
overlays [5, Corollary 28]. This result has also been extended for showing commutation of
left-linear TRSs. Hence, CeTA now fully supports the results described in [5] for the first-order
case. The Isabelle formalization for these extensions is described in [2].

Confluence criteria along with commutation criteria using parallel critical pairs [1] have
been fully formalized and added to CeTA. In addition to the parallel critical pair condition,
CeTA also supports rule labeling with parallel critical pairs for confluence and commutation [6].
Furthermore, compositional confluence criteria as discussed in [3] have been fully formalized and
added to CeTA. Note that these confluence criteria subsume many well-known existing confluence
criteria as corollaries.

Finally, the following changes have also been added to the current version of CeTA: (i)
infeasibility proofs are supported as top-level proof obligations, (ii) decision procedure for
(innermost-)right ground termination, (iii) improved bound for solving linear integer arithmetic
constraints, (iv) improved efficiency of RPO implementation from cubic to quadratic (for fixed
signature), and (v) improved efficiency of WPO implementation from exponential to polynomial.

References

[1] Bernhard Gramlich. Confluence without Termination via Parallel Critical Pairs. In Proc. 21st
International Colloquium on Trees in Algebra and Programming, volume 1059 of Lecture Notes in
Computer Science, pages 211–225, 1996. doi: 10.1007/3-540-61064-2_39.

[2] Christina Kohl and Aart Middeldorp. Formalizing Almost Development Closed Critical Pairs. In
Proc. 14th International Conference on Interactive Theorem Proving, LIPIcs, volume 268, pages
38:1–38:8, 2023. doi: 10.4230/LIPIcs.ITP.2023.38.

[3] Kiraku Shintani and Nao Hirokawa. Compositional Confluence Criteria. In Proc. 7th International
Conference on Formal Structures for Computation and Deduction, LIPIcs, volume 228, pages
28:1–28:19, 2022. doi: 10.4230/LIPIcs.FSCD.2022.28.

[4] René Thiemann and Christian Sternagel. Certification of Termination Proofs using CeTA. In Proc.
22nd International Conference on Theorem Proving in Higher Order Logics, volume 5674 of Lecture
Notes in Computer Science, pages 452–468, 2009. doi: 10.1007/978-3-642-03359-9_31.

[5] Vincent van Oostrom. Developing Developments. Theoretical Computer Science, 175(1):159–181,
1997. doi: 10.1016/S0304-3975(96)00173-9.

[6] Harald Zankl and Bertram Felgenhauer and Aart Middeldorp. Labelings for Decreasing Diagrams.
In Journal of Automated Reasoning, 54(2):101–133, 2015. doi: 10.1007/s10817-014-9316-y.

76

http://cl-informatik.uibk.ac.at/isafor/
http://dx.doi.org/10.1007/3-540-61064-2_39
http://dx.doi.org/10.4230/LIPIcs.ITP.2023.38
http://dx.doi.org/10.4230/LIPIcs.FSCD.2022.28
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1016/S0304-3975(96)00173-9
http://dx.doi.org/10.1007/s10817-014-9316-y

	Foreword
	Organization
	Abstracts of Invited Talks
	Unravelings and Narrowing Trees Towards Confluence of Deterministic CTRSs Naoki Nishida
	History and Future of the CeTA-Certifier for CoCo - Including a New Decision Procedure for Pattern Completeness René Thiemann

	Workshop Contributions
	Reducing Confluence of LCTRSs to Confluence of TRSs Fabian Mitterwallner, Jonas Schöpf and Aart Middeldorp
	On Confluence Criteria for Non-terminating Abstract Rewriting Systems Ievgen Ivanov
	Church–Rosser Modulo for Left-Linear TRSs Revisited Johannes Niederhauser, Nao Hirokawa and Aart Middeldorp
	Residuation = Skolemised Confluence Vincent van Oostrom
	Confluence of a Computational Lambda Calculus for Higher-Order Relational Queries Claudio Sacerdoti Coen and Riccardo Treglia
	A New Format for Rewrite Systems Takahito Aoto, Nao Hirokawa, Dohan Kim, Misaki Kojima, Aart Middeldorp, Fabian Mitterwallner, Naoki Nishida, Teppei Saito, Jonas Schöpf, Kiraku Shintani, René Thiemann and Akihisa Yamada
	The Z-property for left-linear term rewriting via convective context-sensitive completeness Vincent van Oostrom
	Ground Canonical Rewrite Systems Revisited Aart Middeldorp, Masahiko Sakai and Sarah Winkler
	Formalizing Confluence and Commutation Criteria Using Proof Terms Christina Kohl and Aart Middeldorp
	A verified algorithm for deciding pattern completeness and related properties René Thiemann

	Confluence Competition
	Confluence Competition 2023 Raúl Gutiérrez, Aart Middeldorp, Naoki Nishida, Kiraku Shintani
	ConfCSR Filip Stevanovic and Fabian Mitterwallner
	Toma 0.5: An Equational Theorem Prover Teppei Saito and Nao Hirokawa
	Hakusan 0.8: A Confluence Tool Kiraku Shintani and Nao Hirokawa
	CoLL 1.6.1: A Commutation Tool Kiraku Shintani
	CO3 (Version 2.4) Naoki Nishida, Misaki Kojima, and Ayuka Matsumi
	CSI 1.2.7 Fabian Mitterwallner and Aart Middeldorp
	FORT-h 2.0 Fabian Mitterwallner, Aart Middeldorp
	FORTify 2.0 Alexander Lochmann, Fabian Mitterwallner, Aart Middeldorp
	CONFident Miguel Vítores, Raúl Gutiérrez, and Salvador Lucas
	infChecker Raúl Gutiérrez, Salvador Lucas, Miguel Vítores
	AGCP Takahito Aoto
	ACP Takahito Aoto
	nonreach 1.2 Florian Meßner
	CeTA 2.45 René Thiemann, Christina Kohl, and Aart Middeldorp

