Ground Canonical Rewrite Systems Revisited

Aart Middeldorp
University of Innsbruck
Masahiko Sakai
Nagoya University

Sarah Winkler
Free University of Bozen / Bolzano

Outline

1. Introduction
2. Canonical Rewrite Systems
3. Snyder's Transformation
4. Ground AC Canonical Rewrite Systems
(1) Wayne Snyder

A Fast Algorithm for Generating Reduced Ground Rewriting Systems from a Set of Ground Equations
Journal of Symbolic Computation 15(4), pp. 415-450, 1993
(1) Wayne Snyder

A Fast Algorithm for Generating Reduced Ground Rewriting Systems from a Set of Ground Equations
Journal of Symbolic Computation 15(4), pp. 415-450, 1993
(2) Claude Marché

On Ground AC-Completion
Proc. 4th RTA, LNCS 488, pp. 411-422, 1991

Two Papers

(1) Wayne Snyder

A Fast Algorithm for Generating Reduced Ground Rewriting Systems from a Set of Ground Equations
Journal of Symbolic Computation 15(4), pp. 415-450, 1993
(2) Claude Marché

On Ground AC-Completion
Proc. 4th RTA, LNCS 488, pp. 411-422, 1991

Setting

given: finite set \mathcal{E} of ground equations (with or without AC axioms)
desired: canonical rewrite system \mathcal{R} for \mathcal{E}

Two Papers

(1) Wayne Snyder

A Fast Algorithm for Generating Reduced Ground Rewriting Systems from a Set of Ground Equations
Journal of Symbolic Computation 15(4), pp. 415-450, 1993
(2) Claude Marché

On Ground AC-Completion
Proc. 4th RTA, LNCS 488, pp. 411-422, 1991

Setting

given: finite set \mathcal{E} of ground equations (with or without AC axioms)
desired: canonical rewrite system \mathcal{R} for \mathcal{E}

Two Papers

(1) Wayne Snyder

A Fast Algorithm for Generating Reduced Ground Rewriting Systems from a Set of Ground Equations
Journal of Symbolic Computation 15(4), pp. 415-450, 1993
(2) Claude Marché

On Ground AC-Completion
Proc. 4th RTA, LNCS 488, pp. 411-422, 1991

Setting

given: finite set \mathcal{E} of ground equations (with or without AC axioms)
desired: canonical rewrite system \mathcal{R} for \mathcal{E}

Outline

1. Introduction

2. Canonical Rewrite Systems
3. Snyder's Transformation
4. Ground AC Canonical Rewrite Systems

TRS \mathcal{R} is
(1) right-reduced if $r \in \operatorname{NF}(\mathcal{R})$ for every rewrite rule $\ell \rightarrow r$ in \mathcal{R}

Definitions

TRS \mathcal{R} is
(1) right-reduced if $r \in \operatorname{NF}(\mathcal{R})$ for every rewrite rule $\ell \rightarrow r$ in \mathcal{R}
(2) left-reduced if $\ell \in \operatorname{NF}(\mathcal{R} \backslash\{\ell \rightarrow r\})$ for every rewrite rule $\ell \rightarrow r$ in \mathcal{R}

Definitions

TRS \mathcal{R} is

(1) right-reduced if $r \in \operatorname{NF}(\mathcal{R})$ for every rewrite rule $\ell \rightarrow r$ in \mathcal{R}
(2) left-reduced if $\ell \in \operatorname{NF}(\mathcal{R} \backslash\{\ell \rightarrow r\})$ for every rewrite rule $\ell \rightarrow r$ in \mathcal{R}
(3) reduced if it is both left-reduced and right-reduced

Definitions

TRS \mathcal{R} is

(1) right-reduced if $r \in \operatorname{NF}(\mathcal{R})$ for every rewrite rule $\ell \rightarrow r$ in \mathcal{R}
(2) left-reduced if $\ell \in \operatorname{NF}(\mathcal{R} \backslash\{\ell \rightarrow r\})$ for every rewrite rule $\ell \rightarrow r$ in \mathcal{R}
(3) reduced if it is both left-reduced and right-reduced
(4) canonical if it is confluent, terminating and reduced

Definitions

TRS \mathcal{R} is
(1) right-reduced if $r \in \operatorname{NF}(\mathcal{R})$ for every rewrite rule $\ell \rightarrow r$ in \mathcal{R}
(2) left-reduced if $\ell \in \operatorname{NF}(\mathcal{R} \backslash\{\ell \rightarrow r\})$ for every rewrite rule $\ell \rightarrow r$ in \mathcal{R}
(3) reduced if it is both left-reduced and right-reduced
(4) canonical if it is confluent, terminating and reduced

Definitions

TRSs \mathcal{R} and \mathcal{S} are
(1) (conversion) equivalent if $\leftrightarrow_{\mathcal{R}}^{*}=\leftrightarrow_{\mathcal{S}}^{*}$

Definitions

TRS \mathcal{R} is
(1) right-reduced if $r \in \operatorname{NF}(\mathcal{R})$ for every rewrite rule $\ell \rightarrow r$ in \mathcal{R}
(2) left-reduced if $\ell \in \operatorname{NF}(\mathcal{R} \backslash\{\ell \rightarrow r\})$ for every rewrite rule $\ell \rightarrow r$ in \mathcal{R}
(3) reduced if it is both left-reduced and right-reduced
(4) canonical if it is confluent, terminating and reduced

Definitions

TRSs \mathcal{R} and \mathcal{S} are
(1) (conversion) equivalent if $\leftrightarrow_{\mathcal{R}}^{*}=\leftrightarrow_{\mathcal{S}}^{*}$
(2) normalization equivalent if \rightarrow ! $=\rightarrow$!

Theorem (Métivier 1983)

normalization equivalent reduced TRSs are unique up to literal similarity
normalization equivalent reduced ground TRSs are unique

Theorem (Métivier 1983)

normalization equivalent reduced ground TRSs are unique

Theorem (Métivier 1983)

equivalent canonical TRSs compatible with same reduction order are literally similar

Theorem (Métivier 1983)

normalization equivalent reduced ground TRSs are unique

Theorem (Métivier 1983)

equivalent canonical ground TRSs compatible with same reduction order are identical

normalization equivalent reduced ground TRSs are unique

Theorem (Métivier 1983)

equivalent canonical ground TRSs compatible with same reduction order are identical

Theorem (Snyder 1993)

reduced ground TRSs are canonical
normalization equivalent reduced ground TRSs are unique

Theorem (Métivier 1983)

equivalent canonical ground TRSs compatible with same reduction order are identical

Theorem (Snyder 1993)

reduced ground TRSs are canonical

Lemma (Hirokawa et al. 2019)

if \mathcal{R} and \mathcal{S} are canonical TRSs such that $\operatorname{NF}(\mathcal{S}) \subseteq \operatorname{NF}(\mathcal{R})$ and $\rightarrow_{\mathcal{S}} \subseteq \leftrightarrow_{\mathcal{R}}^{*}$ then \mathcal{R} and \mathcal{S} are normalization equivalent

Known Results

(1) congruence closure is efficient technique for solving word problems for ground ESs

Known Results (Snyder 1993)

(1) congruence closure is efficient technique for solving word problems for ground ESs
(2) completion can be tamed for ground ESs such that it always terminates in canonical TRS

Known Results (Snyder 1993)

(1) congruence closure is efficient technique for solving word problems for ground ESs
(2) completion can be tamed for ground ESs such that it always terminates in canonical TRS
(3) every canonical presentation of ground ES can be obtained by ground completion

Known Results (Snyder 1993)

(1) congruence closure is efficient technique for solving word problems for ground ESs
(2) completion can be tamed for ground ESs such that it always terminates in canonical TRS
(3) every canonical presentation of ground ES can be obtained by ground completion
(4) number of different canonical presentations for ground ES consisting of k equations is $\leqslant 2^{k}$

Known Results (Snyder 1993)

(1) congruence closure is efficient technique for solving word problems for ground ESs
(2) completion can be tamed for ground ESs such that it always terminates in canonical TRS
(3) every canonical presentation of ground ES can be obtained by ground completion
(4) number of different canonical presentations for ground ES consisting of k equations is $\leqslant 2^{k}$

Remarks

- results (2) and (3) have been formalized in Isabelle/HOL

Known Results (Snyder 1993)

(1) congruence closure is efficient technique for solving word problems for ground ESs
(2) completion can be tamed for ground ESs such that it always terminates in canonical TRS
(3) every canonical presentation of ground ES can be obtained by ground completion
(4) number of different canonical presentations for ground ES consisting of k equations is $\leqslant 2^{k}$

Remarks

- results (2) and (3) have been formalized in Isabelle/HOL
- result (4) is based on detailed analysis of special structure-sharing dag

Known Results (Snyder 1993)

(1) congruence closure is efficient technique for solving word problems for ground ESs
(2) completion can be tamed for ground ESs such that it always terminates in canonical TRS
(3) every canonical presentation of ground ES can be obtained by ground completion
(4) number of different canonical presentations for ground ES consisting of k equations is $\leqslant 2^{k}$

Remarks

- results (2) and (3) have been formalized in Isabelle/HOL
- result (4) is based on detailed analysis of special structure-sharing dag

Definition

$\operatorname{LHS}(\mathcal{R}) / \operatorname{RHS}(\mathcal{R})$ denotes set of left-hand/right-hand sides of rules of TRS \mathcal{R}

Outline

1. Introduction

2. Canonical Rewrite Systems
3. Snyder's Transformation
4. Ground AC Canonical Rewrite Systems

Definitions

- $t\{r \mapsto \ell\}$ denotes term obtained from t after replacing all subterms r by ℓ

Definitions

- $t\{r \mapsto \ell\}$ denotes term obtained from t after replacing all subterms r by ℓ
- $\mathcal{R}\{r \mapsto \ell\}=\{s\{r \mapsto \ell\} \rightarrow t\{r \mapsto \ell\} \mid s \rightarrow t \in \mathcal{R}\}$ for TRS \mathcal{R}

Definitions

- $t\{r \mapsto \ell\}$ denotes term obtained from t after replacing all subterms r by ℓ
- $\mathcal{R}\{r \mapsto \ell\}=\{s\{r \mapsto \ell\} \rightarrow t\{r \mapsto \ell\} \mid s \rightarrow t \in \mathcal{R}\}$ for TRS \mathcal{R}

Definition (Snyder's Transformation)

transformation

$$
\mathcal{R} \uplus\{\ell \rightarrow r\} \Longrightarrow \mathcal{R}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}
$$

Definitions

- $t\{r \mapsto \ell\}$ denotes term obtained from t after replacing all subterms r by ℓ
- $\mathcal{R}\{r \mapsto \ell\}=\{s\{r \mapsto \ell\} \rightarrow t\{r \mapsto \ell\} \mid s \rightarrow t \in \mathcal{R}\}$ for TRS \mathcal{R}

Definition (Snyder's Transformation)

transformation

$$
\mathcal{R} \uplus\{\ell \rightarrow r\} \Longrightarrow \mathcal{R}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}
$$

provided r is no (proper) subterm of ℓ

Definitions

- $t\{r \mapsto \ell\}$ denotes term obtained from t after replacing all subterms r by ℓ
- $\mathcal{R}\{r \mapsto \ell\}=\{s\{r \mapsto \ell\} \rightarrow t\{r \mapsto \ell\} \mid s \rightarrow t \in \mathcal{R}\}$ for TRS \mathcal{R}

Definition (Snyder's Transformation)

transformation

$$
\mathcal{R} \uplus\{\ell \rightarrow r\} \Longrightarrow \mathcal{R}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}
$$

provided r is no (proper) subterm of ℓ (rule $\ell \rightarrow r$ is reversible)

Definitions

- $t\{r \mapsto \ell\}$ denotes term obtained from t after replacing all subterms r by ℓ
- $\mathcal{R}\{r \mapsto \ell\}=\{s\{r \mapsto \ell\} \rightarrow t\{r \mapsto \ell\} \mid s \rightarrow t \in \mathcal{R}\}$ for TRS \mathcal{R}

Definition (Snyder's Transformation)

transformation

$$
\mathcal{R} \uplus\{\ell \rightarrow r\} \Longrightarrow \mathcal{R}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}
$$

provided r is no (proper) subterm of ℓ (rule $\ell \rightarrow r$ is reversible)

footnote (Snyder 1993)

The fact that this single transformation is sufficient to transform one reduced system into any other can be proved formally, but the proofs are tedious, and so we have preferred to present this intuitively.

Example (Snyder 1993)

$$
\begin{aligned}
f(a) & \approx g(b, b) \\
g(b, h(a)) & \approx g(b, b)
\end{aligned}
$$

$$
\begin{aligned}
f(f(a)) & \approx a \\
h(a) & \approx b
\end{aligned}
$$

$$
f(f(f(a))) \approx a
$$

$$
\mathrm{i}(\mathrm{f}(\mathrm{a})) \approx \mathrm{c}
$$

Example (Snyder 1993)

$$
\begin{array}{rlr}
f(a) & \approx g(b, b) & f(f(a)) \\
g(b, h(a)) & \approx g(b, b) & h(a)
\end{array}
$$

$$
\begin{aligned}
f(f(f(a))) & \approx a \\
i(f(a)) & \approx c
\end{aligned}
$$

admits six different canonical TRSs:

$$
\begin{aligned}
f(g(b, b)) & \xrightarrow{l} g(b, b) \\
a & \xrightarrow{3} g(b, b) \\
\mathrm{h}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) & \xrightarrow{3} \mathrm{~b} \\
\mathrm{i}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) & \xrightarrow{4} \mathrm{c}
\end{aligned}
$$

Example (Snyder 1993)

$$
\begin{aligned}
f(a) & \approx g(b, b) \\
g(b, h(a)) & \approx g(b, b)
\end{aligned}
$$

$$
\mathrm{f}(\mathrm{f}(\mathrm{a})) \approx \mathrm{a}
$$

$$
f(f(f(a))) \approx a
$$

$$
h(a) \approx b
$$

$$
\mathrm{i}(\mathrm{f}(\mathrm{a})) \approx \mathrm{c}
$$

admits six different canonical TRSs:

$$
\begin{aligned}
& f(g(b, b)) \xrightarrow{l} g(b, b) \\
& a \xrightarrow{2} g(b, b) \quad \stackrel{2}{\Longrightarrow} \\
& \mathrm{~h}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{3} \mathrm{~b} \\
& \mathrm{i}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{4} \mathrm{c} \\
& \begin{array}{r}
f(a) \xrightarrow{l} a \\
g(b, b) \xrightarrow{2} a \\
h(a) \xrightarrow{3} b \\
i(a) \xrightarrow{l} c
\end{array}
\end{aligned}
$$

Example (Snyder 1993)

$$
\begin{aligned}
f(a) & \approx g(b, b) \\
g(b, h(a)) & \approx g(b, b)
\end{aligned}
$$

$$
\mathrm{f}(\mathrm{f}(\mathrm{a})) \approx \mathrm{a}
$$

$$
f(f(f(a))) \approx a
$$

$$
h(a) \approx b
$$

$$
\mathrm{i}(\mathrm{f}(\mathrm{a})) \approx \mathrm{c}
$$

admits six different canonical TRSs:

$$
\begin{aligned}
& f(g(b, b)) \xrightarrow{l} g(b, b) \\
& \text { a } \xrightarrow[3]{2} g(b, b) \quad \stackrel{2}{\Longleftrightarrow} \\
& \mathrm{~h}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{3} \mathrm{~b} \\
& \mathrm{i}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{4} \mathrm{c} \\
& \begin{aligned}
f(a) & \xrightarrow{l} a \\
g(b, b) & \xrightarrow{2} a \\
h(a) & \xrightarrow{3} b \\
i(a) & \xrightarrow{l} c
\end{aligned}
\end{aligned}
$$

Example (Snyder 1993)

$$
\begin{aligned}
f(a) & \approx g(b, b) \\
g(b, h(a)) & \approx g(b, b)
\end{aligned}
$$

$$
f(f(a)) \approx a
$$

$$
f(f(f(a))) \approx a
$$

$$
h(a) \approx b
$$

$$
i(f(a)) \approx c
$$

admits six different canonical TRSs:

$$
\begin{aligned}
& f(g(b, b)) \xrightarrow{1} g(b, b) \\
& a \xrightarrow{2} g(b, b) \quad \stackrel{2}{\Longleftrightarrow} \\
& h(g(b, b)) \xrightarrow{3} b \\
& \mathrm{i}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{4} \mathrm{c} \\
& \sqrt{ } 1 \\
& f(g(b, b)) \xrightarrow{1} g(b, b) \\
& a \xrightarrow{2} g(b, b) \\
& h(g(b, b)) \xrightarrow{3} b \\
& \mathrm{c} \xrightarrow{4} \mathrm{i}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b}))
\end{aligned}
$$

Example (Snyder 1993)

$$
\begin{aligned}
f(a) & \approx g(b, b) \\
g(b, h(a)) & \approx g(b, b)
\end{aligned}
$$

$$
\mathrm{f}(\mathrm{f}(\mathrm{a})) \approx \mathrm{a}
$$

$$
h(a) \approx b
$$

$$
\begin{aligned}
f(f(f(a))) & \approx a \\
i(f(a)) & \approx c
\end{aligned}
$$

admits six different canonical TRSs:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{\mathrm{l}} \mathrm{~g}(\mathrm{~b}, \mathrm{~b}) \\
& a \xrightarrow{2} g(b, b) \quad \stackrel{2}{\Longleftrightarrow} \\
& \mathrm{f}(\mathrm{a}) \xrightarrow{\xrightarrow{2}} \mathrm{a} \\
& h(a) \xrightarrow{3} b \\
& \stackrel{3}{\Longleftrightarrow} \\
& \mathrm{~g}(\mathrm{~h}(\mathrm{a}), \mathrm{h}(\mathrm{a})) \xrightarrow{\mathrm{f}(\mathrm{a})} \mathrm{a} \\
& \text { b } \xrightarrow{3} h(a) \\
& \mathrm{i}(\mathrm{a}) \xrightarrow{4} \mathrm{C} \\
& h(g(b, b)) \xrightarrow{3} b \\
& \mathrm{i}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{4} \mathrm{c} \\
& i(a) \xrightarrow{4} c \\
& \begin{aligned}
f(g(b, b)) & \xrightarrow{1} g(b, b) \\
a & \xrightarrow{\longrightarrow} g(b, b) \\
\mathrm{h}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) & \xrightarrow{3} \mathrm{~b} \\
\mathrm{c} & \xrightarrow{4} \mathrm{i}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b}))
\end{aligned}
\end{aligned}
$$

Example (Snyder 1993)

$$
\begin{aligned}
f(a) & \approx g(b, b) \\
g(b, h(a)) & \approx g(b, b)
\end{aligned}
$$

$$
\mathrm{f}(\mathrm{f}(\mathrm{a})) \approx \mathrm{a}
$$

$$
h(a) \approx b
$$

$$
\begin{aligned}
f(f(f(a))) & \approx a \\
i(f(a)) & \approx c
\end{aligned}
$$

admits six different canonical TRSs:

$$
\begin{aligned}
& f(g(b, b)) \xrightarrow{l} g(b, b) \\
& \text { a } \xrightarrow{2} g(b, b) \quad \stackrel{2}{\Longleftrightarrow} \\
& \mathrm{~h}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{3} \mathrm{~b} \\
& \mathrm{i}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{4} \mathrm{c} \\
& \sqrt{4} \\
& f(g(b, b)) \xrightarrow{l} g(b, b) \\
& \text { a } \xrightarrow{2} g(b, b) \\
& \mathrm{h}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{3} \mathrm{~b} \\
& \text { c } \xrightarrow{4} \mathrm{i}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \\
& \mathrm{f}(\mathrm{a}) \xrightarrow{\text { l }} a \\
& g(b, b) \xrightarrow{2} a \\
& h(a) \xrightarrow{3} b \\
& \stackrel{3}{\Longleftrightarrow} \\
& f(a) \xrightarrow{1} a \\
& \mathrm{~g}(\mathrm{~h}(\mathrm{a}), \mathrm{h}(\mathrm{a})) \xrightarrow{2} \mathrm{a} \\
& \text { b } \xrightarrow{3} h(a) \\
& \mathrm{i}(\mathrm{a}) \xrightarrow{4} \mathrm{c}
\end{aligned}
$$

Example (Snyder 1993)

$$
\begin{aligned}
f(a) & \approx g(b, b) \\
g(b, h(a)) & \approx g(b, b)
\end{aligned}
$$

$$
f(f(a)) \approx a
$$

$$
h(a) \approx b
$$

$$
\begin{aligned}
f(f(f(a))) & \approx a \\
i(f(a)) & \approx c
\end{aligned}
$$

admits six different canonical TRSs:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{\mathrm{l}} \mathrm{~g}(\mathrm{~b}, \mathrm{~b}) \\
& \text { a } \xrightarrow{2} g(b, b) \quad \stackrel{2}{\Longleftrightarrow} \\
& \mathrm{~h}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{3} \mathrm{~b} \\
& \mathrm{i}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{4} \mathrm{c} \\
& \sqrt{4} \\
& f(g(b, b)) \xrightarrow{1} g(b, b) \\
& a \xrightarrow{2} g(b, b) \quad \stackrel{2}{\Longleftrightarrow} \\
& \mathrm{~h}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \xrightarrow{3} \mathrm{~b} \\
& \text { c } \xrightarrow{4} \mathrm{i}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b})) \\
& \begin{aligned}
& f(a) \xrightarrow{1} a \\
& g(b, b) \xrightarrow{2} a \\
& h(a) \xrightarrow{4} b \\
& i(a) \xrightarrow{4} c \\
& \mathbb{T}^{4} \\
& f(a) \xrightarrow{l} a \\
& g(b, b) \xrightarrow{2} a \\
& h(a) \xrightarrow{4} b \\
& c \xrightarrow{4}(a)
\end{aligned}
\end{aligned}
$$

Example (Snyder 1993)

$$
\begin{aligned}
f(a) & \approx g(b, b) & f(f(a)) & \approx a \\
g(b, h(a)) & \approx g(b, b) & h(a) & \approx b
\end{aligned}
$$

admits six different canonical TRSs:

$$
\begin{aligned}
& f(g(b, b)) \xrightarrow{1} g(b, b) \\
& \text { a } \xrightarrow[3]{2} g(b, b) \quad \stackrel{2}{\Longleftrightarrow} \\
& h(g(b, b)) \xrightarrow{3} b \\
& i(g(b, b)) \xrightarrow{4} c \\
& \sqrt{4} \\
& f(g(b, b)) \xrightarrow{1} g(b, b) \\
& a \xrightarrow{2} g(b, b) \quad \stackrel{2}{\Longleftrightarrow} \\
& h(g(b, b)) \xrightarrow{3} b \\
& c \xrightarrow{4} \mathrm{i}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b}))
\end{aligned}
$$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced:
suppose $t \in \operatorname{RHS}(\mathcal{S})$ is reducible with rule $u \rightarrow v \in \mathcal{S}$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced:
suppose $t \in \operatorname{RHS}(\mathcal{S})$ is reducible with rule $u \rightarrow v \in \mathcal{S} \Rightarrow t \unrhd u$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced:
suppose $t \in \operatorname{RHS}(\mathcal{S})$ is reducible with rule $u \rightarrow v \in \mathcal{S} \Rightarrow t \unrhd u \quad \Longrightarrow \quad \Longrightarrow \quad r$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced:
suppose $t \in \operatorname{RHS}(\mathcal{S})$ is reducible with rule $u \rightarrow v \in \mathcal{S} \Rightarrow t \unrhd u \Rightarrow u \neq r$ $u \rightarrow v \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced:
suppose $t \in \operatorname{RHS}(\mathcal{S})$ is reducible with rule $u \rightarrow v \in \mathcal{S} \Longrightarrow t \unrhd u \Rightarrow u \neq r$ $u \rightarrow v \in \mathcal{R}^{\prime}\{r \mapsto \ell\} \quad \Longrightarrow \quad u=u^{\prime}\{r \mapsto \ell\}$ and $v=v^{\prime}\{r \mapsto \ell\}$ with $u^{\prime} \rightarrow v^{\prime} \in \mathcal{R}^{\prime}$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced:
suppose $t \in \operatorname{RHS}(\mathcal{S})$ is reducible with rule $u \rightarrow v \in \mathcal{S} \Longrightarrow t \unrhd u \Rightarrow u \neq r$ $u \rightarrow v \in \mathcal{R}^{\prime}\{r \mapsto \ell\} \quad \Longrightarrow \quad u=u^{\prime}\{r \mapsto \ell\}$ and $v=v^{\prime}\{r \mapsto \ell\}$ with $u^{\prime} \rightarrow v^{\prime} \in \mathcal{R}^{\prime}$ $t=t^{\prime}\{r \mapsto \ell\}$ with $t^{\prime} \in \operatorname{RHS}(\mathcal{R})$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced:
suppose $t \in \operatorname{RHS}(\mathcal{S})$ is reducible with rule $u \rightarrow v \in \mathcal{S} \Longrightarrow t \unrhd u \quad \Longrightarrow \neq r$ $u \rightarrow v \in \mathcal{R}^{\prime}\{r \mapsto \ell\} \quad \Longrightarrow \quad u=u^{\prime}\{r \mapsto \ell\}$ and $v=v^{\prime}\{r \mapsto \ell\}$ with $u^{\prime} \rightarrow v^{\prime} \in \mathcal{R}^{\prime}$ $t=t^{\prime}\{r \mapsto \ell\}$ with $t^{\prime} \in \operatorname{RHS}(\mathcal{R}) \quad \Longrightarrow \quad t^{\prime} \unrhd u^{\prime}$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced:
suppose $t \in \operatorname{RHS}(\mathcal{S})$ is reducible with rule $u \rightarrow v \in \mathcal{S} \Longrightarrow t \unrhd u \quad \Longrightarrow \neq r$ $u \rightarrow v \in \mathcal{R}^{\prime}\{r \mapsto \ell\} \quad \Longrightarrow u=u^{\prime}\{r \mapsto \ell\}$ and $v=v^{\prime}\{r \mapsto \ell\}$ with $u^{\prime} \rightarrow v^{\prime} \in \mathcal{R}^{\prime}$ $t=t^{\prime}\{r \mapsto \ell\}$ with $t^{\prime} \in \operatorname{RHS}(\mathcal{R}) \Longrightarrow t^{\prime} \unrhd u^{\prime} \quad \Longrightarrow \mathcal{R}$ is not right-reduced

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced:
suppose $t \in \operatorname{RHS}(\mathcal{S})$ is reducible with rule $u \rightarrow v \in \mathcal{S} \Longrightarrow t \unrhd u \quad \Longrightarrow \neq r$ $u \rightarrow v \in \mathcal{R}^{\prime}\{r \mapsto \ell\} \quad \Longrightarrow \quad u=u^{\prime}\{r \mapsto \ell\}$ and $v=v^{\prime}\{r \mapsto \ell\}$ with $u^{\prime} \rightarrow v^{\prime} \in \mathcal{R}^{\prime}$ $t=t^{\prime}\{r \mapsto \ell\}$ with $t^{\prime} \in \operatorname{RHS}(\mathcal{R}) \Longrightarrow t^{\prime} \unrhd u^{\prime} \quad \Longrightarrow \mathcal{R}$ is not right-reduced \quad i

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \operatorname{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nsubseteq \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \operatorname{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \quad \Longrightarrow \quad r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$ $\ell \not \Perp v$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \nexists v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right)$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \quad \Longrightarrow \quad r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \nsubseteq v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{LHS}(\mathcal{R})$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \nexists v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{LHS}(\mathcal{R}) \quad \Longrightarrow \mathcal{R}$ is not right-reduced

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \nexists v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{LHS}(\mathcal{R}) \quad \Longrightarrow \mathcal{R}$ is not right-reduced

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \not \Perp v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{LHS}(\mathcal{R}) \Longrightarrow \mathcal{R}$ is not right-reduced \downarrow
(2) $t \rightarrow u \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \operatorname{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \nexists v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{LHS}(\mathcal{R}) \quad \Longrightarrow \mathcal{R}$ is not right-reduced
(2) $t \rightarrow u \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$r \not \Perp t$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \operatorname{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \nexists v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{LHS}(\mathcal{R}) \quad \Longrightarrow \mathcal{R}$ is not right-reduced
(2) $t \rightarrow u \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$r \nexists t \quad \Longrightarrow \quad t \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\} \backslash\{t \rightarrow u\}\right)$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \operatorname{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \nexists v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{LHS}(\mathcal{R}) \quad \Longrightarrow \mathcal{R}$ is not right-reduced
(2) $t \rightarrow u \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$r \nexists t \quad \Longrightarrow \quad t \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\} \backslash\{t \rightarrow u\}\right)$
$t \triangleright v$ with $v \rightarrow w \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \nexists v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{LHS}(\mathcal{R}) \quad \Longrightarrow \mathcal{R}$ is not right-reduced
(2) $t \rightarrow u \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$r \nexists t \quad \Longrightarrow \quad t \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\} \backslash\{t \rightarrow u\}\right)$
$t \triangleright v$ with $v \rightarrow w \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$t=t^{\prime}\{r \mapsto \ell\}$ and $v=v^{\prime}\{r \mapsto \ell\}$ with $t^{\prime}, v^{\prime} \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right)$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nsubseteq \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \nexists v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{LHS}(\mathcal{R}) \Longrightarrow \mathcal{R}$ is not right-reduced \downarrow
(2) $t \rightarrow u \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$r \nexists t \quad \Longrightarrow \quad t \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\} \backslash\{t \rightarrow u\}\right)$
$t \triangleright v$ with $v \rightarrow w \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$t=t^{\prime}\{r \mapsto \ell\}$ and $v=v^{\prime}\{r \mapsto \ell\}$ with $t^{\prime}, v^{\prime} \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right)$
$t^{\prime} \triangleright v^{\prime}$

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nexists \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \nexists v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{LHS}(\mathcal{R}) \Longrightarrow \mathcal{R}$ is not right-reduced \downarrow
(2) $t \rightarrow u \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$r \nexists t \quad \Longrightarrow \quad t \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\} \backslash\{t \rightarrow u\}\right)$
$t \triangleright v$ with $v \rightarrow w \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$t=t^{\prime}\{r \mapsto \ell\}$ and $v=v^{\prime}\{r \mapsto \ell\}$ with $t^{\prime}, v^{\prime} \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right)$
$t^{\prime} \triangleright v^{\prime} \quad \Longrightarrow \mathcal{R}^{\prime}$ is not right-reduced

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nsubseteq \ell$

- \mathcal{S} is right-reduced and left-reduced:
consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \nexists v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{LHS}(\mathcal{R}) \Longrightarrow \mathcal{R}$ is not right-reduced \downarrow
(2) $t \rightarrow u \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$r \nexists t \quad \Longrightarrow \quad t \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\} \backslash\{t \rightarrow u\}\right)$
$t \triangleright v$ with $v \rightarrow w \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$t=t^{\prime}\{r \mapsto \ell\}$ and $v=v^{\prime}\{r \mapsto \ell\}$ with $t^{\prime}, v^{\prime} \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right)$
$t^{\prime} \triangleright v^{\prime} \Longrightarrow \mathcal{R}^{\prime}$ is not right-reduced \downarrow

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nsubseteq \ell$

- \mathcal{S} is right-reduced and left-reduced $\Longrightarrow \mathcal{S}$ is canonical by theorem B consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \nexists v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{LHS}(\mathcal{R}) \Longrightarrow \mathcal{R}$ is not right-reduced \downarrow
(2) $t \rightarrow u \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$r \nexists t \quad \Longrightarrow \quad t \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\} \backslash\{t \rightarrow u\}\right)$
$t \triangleright v$ with $v \rightarrow w \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$t=t^{\prime}\{r \mapsto \ell\}$ and $v=v^{\prime}\{r \mapsto \ell\}$ with $t^{\prime}, v^{\prime} \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right)$
$t^{\prime} \triangleright v^{\prime} \Longrightarrow \mathcal{R}^{\prime}$ is not right-reduced \downarrow

Lemma

if $\mathcal{R} \Longrightarrow \mathcal{S}$ and \mathcal{R} is canonical then \mathcal{S} is canonical and equivalent to \mathcal{R}

Proof (cont'd)

$\mathcal{R}=\mathcal{R}^{\prime} \uplus\{\ell \rightarrow r\}$ and $\mathcal{S}=\mathcal{R}^{\prime}\{r \mapsto \ell\} \cup\{r \rightarrow \ell\}$ with $r \nsubseteq \ell$

- \mathcal{S} is right-reduced and left-reduced $\Longrightarrow \mathcal{S}$ is canonical by theorem B consider $t \rightarrow u \in \mathcal{S}$ and suppose $t \notin \mathrm{NF}(\mathcal{S} \backslash\{t \rightarrow u\})$
(1) $t=r \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right) \Longrightarrow r \unrhd v$ with $v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\}\right)$
$\ell \nexists v \quad \Longrightarrow \quad v \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{LHS}(\mathcal{R}) \quad \Longrightarrow \mathcal{R}$ is not right-reduced
(2) $t \rightarrow u \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$r \nexists t \quad \Longrightarrow \quad t \notin \operatorname{NF}\left(\mathcal{R}^{\prime}\{r \mapsto \ell\} \backslash\{t \rightarrow u\}\right)$
$t \triangleright v$ with $v \rightarrow w \in \mathcal{R}^{\prime}\{r \mapsto \ell\}$
$t=t^{\prime}\{r \mapsto \ell\}$ and $v=v^{\prime}\{r \mapsto \ell\}$ with $t^{\prime}, v^{\prime} \in \operatorname{LHS}\left(\mathcal{R}^{\prime}\right)$
$t^{\prime} \triangleright v^{\prime} \Longrightarrow \mathcal{R}^{\prime}$ is not right-reduced \downarrow
if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow^{*} \mathcal{S}$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
$\mathrm{NF}(\mathcal{R})$ is closed under subterms

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
$\mathrm{NF}(\mathcal{R})$ is closed under subterms $\Longrightarrow \mathrm{NF}(\mathcal{R}) \subseteq \mathrm{NF}(\mathcal{S})$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
$\mathrm{NF}(\mathcal{R})$ is closed under subterms $\Longrightarrow \mathrm{NF}(\mathcal{R}) \subseteq \mathrm{NF}(\mathcal{S})$
$\rightarrow_{\mathcal{R}} \subseteq \leftrightarrow_{\mathcal{S}}^{*}$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Rightarrow \mathcal{R}=\mathcal{S}$
$\mathrm{NF}(\mathcal{R})$ is closed under subterms $\quad \Longrightarrow \mathrm{NF}(\mathcal{R}) \subseteq \mathrm{NF}(\mathcal{S})$
$\rightarrow_{\mathcal{R}} \subseteq \leftrightarrow_{\mathcal{S}}^{*} \Longrightarrow \mathcal{R}$ and \mathcal{S} are normalization equivalent by lemma

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Rightarrow \mathcal{R}=\mathcal{S}$
$\mathrm{NF}(\mathcal{R})$ is closed under subterms $\quad \Longrightarrow \mathrm{NF}(\mathcal{R}) \subseteq \mathrm{NF}(\mathcal{S})$
$\rightarrow_{\mathcal{R}} \subseteq \leftrightarrow_{\mathcal{S}}^{*} \Longrightarrow \mathcal{R}$ and \mathcal{S} are normalization equivalent by lemma
$\mathcal{R}=\mathcal{S}$ by theorem A

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
$\mathrm{NF}(\mathcal{R})$ is closed under subterms $\quad \Longrightarrow \mathrm{NF}(\mathcal{R}) \subseteq \mathrm{NF}(\mathcal{S})$
$\rightarrow_{\mathcal{R}} \subseteq \leftrightarrow_{\mathcal{S}}^{*} \Longrightarrow \mathcal{R}$ and \mathcal{S} are normalization equivalent by lemma
$\mathcal{R}=\mathcal{S}$ by theorem A
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
$\mathrm{NF}(\mathcal{R})$ is closed under subterms $\quad \Longrightarrow \mathrm{NF}(\mathcal{R}) \subseteq \mathrm{NF}(\mathcal{S})$
$\rightarrow_{\mathcal{R}} \subseteq \leftrightarrow_{\mathcal{S}}^{*} \Longrightarrow \mathcal{R}$ and \mathcal{S} are normalization equivalent by lemma
$\mathcal{R}=\mathcal{S}$ by theorem ${ }^{A}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- base case: $\operatorname{RHS}(\mathcal{S}) \subseteq \operatorname{NF}(\mathcal{R})$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
$\mathrm{NF}(\mathcal{R})$ is closed under subterms $\quad \Longrightarrow \mathrm{NF}(\mathcal{R}) \subseteq \mathrm{NF}(\mathcal{S})$
$\rightarrow_{\mathcal{R}} \subseteq \leftrightarrow_{\mathcal{S}}^{*} \Longrightarrow \mathcal{R}$ and \mathcal{S} are normalization equivalent by lemma
$\mathcal{R}=\mathcal{S}$ by theorem ${ }^{A}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- base case: $\operatorname{RHS}(\mathcal{S}) \subseteq \mathrm{NF}(\mathcal{R})$ suppose $\mathcal{R} \neq \mathcal{S}$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
$\mathrm{NF}(\mathcal{R})$ is closed under subterms $\quad \Longrightarrow \mathrm{NF}(\mathcal{R}) \subseteq \mathrm{NF}(\mathcal{S})$
$\rightarrow_{\mathcal{R}} \subseteq \leftrightarrow_{\mathcal{S}}^{*} \Longrightarrow \mathcal{R}$ and \mathcal{S} are normalization equivalent by lemma
$\mathcal{R}=\mathcal{S}$ by theorem ${ }^{A}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- base case: $\operatorname{RHS}(\mathcal{S}) \subseteq \operatorname{NF}(\mathcal{R})$
suppose $\mathcal{R} \neq \mathcal{S}$
$u \in \operatorname{NF}(\mathcal{R})$ for some $u \rightarrow v \in \mathcal{S}$ by (1)

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
$\mathrm{NF}(\mathcal{R})$ is closed under subterms $\quad \Longrightarrow \mathrm{NF}(\mathcal{R}) \subseteq \mathrm{NF}(\mathcal{S})$
$\rightarrow_{\mathcal{R}} \subseteq \leftrightarrow_{\mathcal{S}}^{*} \Longrightarrow \mathcal{R}$ and \mathcal{S} are normalization equivalent by lemma
$\mathcal{R}=\mathcal{S}$ by theorem ${ }^{A}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- base case: $\operatorname{RHS}(\mathcal{S}) \subseteq \operatorname{NF}(\mathcal{R})$
suppose $\mathcal{R} \neq \mathcal{S}$
$u \in \operatorname{NF}(\mathcal{R})$ for some $u \rightarrow v \in \mathcal{S}$ by $\oplus \quad \Longrightarrow \quad v \in \operatorname{NF}(\mathcal{R})$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
$\mathrm{NF}(\mathcal{R})$ is closed under subterms $\quad \Longrightarrow \mathrm{NF}(\mathcal{R}) \subseteq \mathrm{NF}(\mathcal{S})$
$\rightarrow_{\mathcal{R}} \subseteq \leftrightarrow_{\mathcal{S}}^{*} \Longrightarrow \mathcal{R}$ and \mathcal{S} are normalization equivalent by lemma
$\mathcal{R}=\mathcal{S}$ by theorem ${ }^{A}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- base case: $\operatorname{RHS}(\mathcal{S}) \subseteq \operatorname{NF}(\mathcal{R})$

$$
\text { suppose } \mathcal{R} \neq \mathcal{S}
$$

$$
u \in \operatorname{NF}(\mathcal{R}) \text { for some } u \rightarrow v \in \mathcal{S} \text { by }(1) \Longrightarrow v \in \operatorname{NF}(\mathcal{R})
$$

$$
u \leftrightarrow_{\mathcal{R}}^{*} v
$$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
$\mathrm{NF}(\mathcal{R})$ is closed under subterms $\quad \Longrightarrow \mathrm{NF}(\mathcal{R}) \subseteq \mathrm{NF}(\mathcal{S})$
$\rightarrow_{\mathcal{R}} \subseteq \leftrightarrow_{\mathcal{S}}^{*} \Longrightarrow \mathcal{R}$ and \mathcal{S} are normalization equivalent by lemma
$\mathcal{R}=\mathcal{S}$ by theorem ${ }^{A}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- base case: $\operatorname{RHS}(\mathcal{S}) \subseteq \operatorname{NF}(\mathcal{R})$

$$
\text { suppose } \mathcal{R} \neq \mathcal{S}
$$

$$
\begin{aligned}
& u \in \operatorname{NF}(\mathcal{R}) \text { for some } u \rightarrow v \in \mathcal{S} \text { by }(1) \Longrightarrow v \in \operatorname{NF}(\mathcal{R}) \\
& u \nleftarrow \mathcal{R} v \quad \downarrow
\end{aligned}
$$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow^{*} \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:
suppose $\mathcal{R} \neq \mathcal{S}$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:
suppose $\mathcal{R} \neq \mathcal{S} \Longrightarrow \mathcal{S}$ contains rewrite rule $u \rightarrow v$ with $u \in \operatorname{NF}(\mathcal{R})$ by (1)

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:
suppose $\mathcal{R} \neq \mathcal{S} \Longrightarrow \mathcal{S}$ contains rewrite rule $u \rightarrow v$ with $u \in \operatorname{NF}(\mathcal{R})$ by (1) $v \rightarrow_{\mathcal{R}}^{+} u$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:

$$
\text { suppose } \mathcal{R} \neq \mathcal{S} \Longrightarrow \mathcal{S} \text { contains rewrite rule } u \rightarrow v \text { with } u \in \operatorname{NF}(\mathcal{R}) \text { by (1) }
$$

$$
v \rightarrow_{\mathcal{R}}^{+} u \quad \Longrightarrow \quad v \nexists u
$$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow^{*} \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:
suppose $\mathcal{R} \neq \mathcal{S} \Longrightarrow \mathcal{S}$ contains rewrite rule $u \rightarrow v$ with $u \in \operatorname{NF}(\mathcal{R})$ by (1)
$v \rightarrow_{\mathcal{R}}^{+} u \Longrightarrow v \nexists u \quad \Longrightarrow \quad u \rightarrow v \in \mathcal{S}$ is reversible

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Rightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:
suppose $\mathcal{R} \neq \mathcal{S} \Longrightarrow \mathcal{S}$ contains rewrite rule $u \rightarrow v$ with $u \in \operatorname{NF}(\mathcal{R})$ by (1)
$v \rightarrow_{\mathcal{R}}^{+} u \quad \Longrightarrow \quad v \nexists u \quad \Longrightarrow u \rightarrow v \in \mathcal{S}$ is reversible
$\mathcal{S} \Longrightarrow \mathcal{S}^{\prime}=(\mathcal{S} \backslash\{u \rightarrow v\})\{v \mapsto u\} \cup\{v \rightarrow u\}$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:
suppose $\mathcal{R} \neq \mathcal{S} \Longrightarrow \mathcal{S}$ contains rewrite rule $u \rightarrow v$ with $u \in \operatorname{NF}(\mathcal{R})$ by (1)
$v \rightarrow_{\mathcal{R}}^{+} u \Longrightarrow v \nexists u \quad \Longrightarrow u \rightarrow v \in \mathcal{S}$ is reversible
$\mathcal{S} \Longrightarrow \mathcal{S}^{\prime}=(\mathcal{S} \backslash\{u \rightarrow v\})\{v \mapsto u\} \cup\{v \rightarrow u\}$
claim: $|\operatorname{RHS}(\mathcal{S}) \backslash \mathrm{NF}(\mathcal{R})|>\left|\mathrm{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \mathrm{NF}(\mathcal{R})\right|$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:
suppose $\mathcal{R} \neq \mathcal{S} \Longrightarrow \mathcal{S}$ contains rewrite rule $u \rightarrow v$ with $u \in \operatorname{NF}(\mathcal{R})$ by (1)
$v \rightarrow_{\mathcal{R}}^{+} u \Longrightarrow v \nexists u \quad \Longrightarrow u \rightarrow v \in \mathcal{S}$ is reversible
$\mathcal{S} \Longrightarrow \mathcal{S}^{\prime}=(\mathcal{S} \backslash\{u \rightarrow v\})\{v \mapsto u\} \cup\{v \rightarrow u\}$
claim: $|\operatorname{RHS}(\mathcal{S}) \backslash \mathrm{NF}(\mathcal{R})|>\left|\operatorname{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \mathrm{NF}(\mathcal{R})\right|$
- $v \in \operatorname{RHS}(\mathcal{S}) \backslash \mathrm{NF}(\mathcal{R})$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:
suppose $\mathcal{R} \neq \mathcal{S} \Longrightarrow \mathcal{S}$ contains rewrite rule $u \rightarrow v$ with $u \in \operatorname{NF}(\mathcal{R})$ by (1)
$v \rightarrow_{\mathcal{R}}^{+} u \quad \Longrightarrow \quad v \nexists u \quad \Longrightarrow u \rightarrow v \in \mathcal{S}$ is reversible
$\mathcal{S} \Longrightarrow \mathcal{S}^{\prime}=(\mathcal{S} \backslash\{u \rightarrow v\})\{v \mapsto u\} \cup\{v \rightarrow u\}$
claim: $|\operatorname{RHS}(\mathcal{S}) \backslash \mathrm{NF}(\mathcal{R})|>\left|\operatorname{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \mathrm{NF}(\mathcal{R})\right|$
- $v \in \operatorname{RHS}(\mathcal{S}) \backslash \mathrm{NF}(\mathcal{R})$ and $u \notin \operatorname{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \mathrm{NF}(\mathcal{R})$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:
suppose $\mathcal{R} \neq \mathcal{S} \Longrightarrow \mathcal{S}$ contains rewrite rule $u \rightarrow v$ with $u \in \operatorname{NF}(\mathcal{R})$ by (1)
$v \rightarrow_{\mathcal{R}}^{+} u \quad \Longrightarrow \quad v \nexists u \quad \Longrightarrow u \rightarrow v \in \mathcal{S}$ is reversible
$\mathcal{S} \Longrightarrow \mathcal{S}^{\prime}=(\mathcal{S} \backslash\{u \rightarrow v\})\{v \mapsto u\} \cup\{v \rightarrow u\}$
claim: $|\operatorname{RHS}(\mathcal{S}) \backslash \mathrm{NF}(\mathcal{R})|>\left|\operatorname{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \mathrm{NF}(\mathcal{R})\right|$
- $v \in \operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})$ and $u \notin \operatorname{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \operatorname{NF}(\mathcal{R})$
- $r \in \operatorname{RHS}(\mathcal{S})$ with $v \unlhd r$ is replaced by $r[u] \in \operatorname{RHS}\left(\mathcal{S}^{\prime}\right)$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:
suppose $\mathcal{R} \neq \mathcal{S} \Longrightarrow \mathcal{S}$ contains rewrite rule $u \rightarrow v$ with $u \in \operatorname{NF}(\mathcal{R})$ by (1)
$v \rightarrow_{\mathcal{R}}^{+} u \quad \Longrightarrow \quad v \nexists u \quad \Longrightarrow u \rightarrow v \in \mathcal{S}$ is reversible
$\mathcal{S} \Longrightarrow \mathcal{S}^{\prime}=(\mathcal{S} \backslash\{u \rightarrow v\})\{v \mapsto u\} \cup\{v \rightarrow u\}$
claim: $|\operatorname{RHS}(\mathcal{S}) \backslash \mathrm{NF}(\mathcal{R})|>\left|\operatorname{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \mathrm{NF}(\mathcal{R})\right|$
- $v \in \operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})$ and $u \notin \operatorname{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \operatorname{NF}(\mathcal{R})$
- $r \in \operatorname{RHS}(\mathcal{S})$ with $v \unlhd r$ is replaced by $r[u] \in \operatorname{RHS}\left(\mathcal{S}^{\prime}\right)$ but $r \in \operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})$

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:
suppose $\mathcal{R} \neq \mathcal{S} \Longrightarrow \mathcal{S}$ contains rewrite rule $u \rightarrow v$ with $u \in \operatorname{NF}(\mathcal{R})$ by (1)
$v \rightarrow_{\mathcal{R}}^{+} u \quad \Longrightarrow \quad v \nexists u \quad \Longrightarrow u \rightarrow v \in \mathcal{S}$ is reversible
$\mathcal{S} \Longrightarrow \mathcal{S}^{\prime}=(\mathcal{S} \backslash\{u \rightarrow v\})\{v \mapsto u\} \cup\{v \rightarrow u\}$
claim: $|\operatorname{RHS}(\mathcal{S}) \backslash \mathrm{NF}(\mathcal{R})|>\left|\operatorname{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \mathrm{NF}(\mathcal{R})\right|$
- $v \in \operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})$ and $u \notin \operatorname{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \operatorname{NF}(\mathcal{R})$
- $r \in \operatorname{RHS}(\mathcal{S})$ with $v \unlhd r$ is replaced by $r[u] \in \operatorname{RHS}\left(\mathcal{S}^{\prime}\right)$ but $r \in \operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})$ $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}^{\prime}$ by induction hypothesis

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:
suppose $\mathcal{R} \neq \mathcal{S} \Longrightarrow \mathcal{S}$ contains rewrite rule $u \rightarrow v$ with $u \in \operatorname{NF}(\mathcal{R})$ by (1)
$v \rightarrow_{\mathcal{R}}^{+} u \quad \Longrightarrow \quad v \nexists u \quad \Longrightarrow u \rightarrow v \in \mathcal{S}$ is reversible
$\mathcal{S} \Longrightarrow \mathcal{S}^{\prime}=(\mathcal{S} \backslash\{u \rightarrow v\})\{v \mapsto u\} \cup\{v \rightarrow u\} \quad \Longrightarrow \mathcal{S}^{\prime} \Longrightarrow \mathcal{S}$
claim: $|\operatorname{RHS}(\mathcal{S}) \backslash \mathrm{NF}(\mathcal{R})|>\left|\operatorname{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \mathrm{NF}(\mathcal{R})\right|$
- $v \in \operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})$ and $u \notin \operatorname{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \operatorname{NF}(\mathcal{R})$
- $r \in \operatorname{RHS}(\mathcal{S})$ with $v \unlhd r$ is replaced by $r[u] \in \operatorname{RHS}\left(\mathcal{S}^{\prime}\right)$ but $r \in \operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})$ $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}^{\prime}$ by induction hypothesis

Theorem

if \mathcal{R} and \mathcal{S} are equivalent ground canonical TRSs then $\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Proof

(1) $\operatorname{NF}(\mathcal{R}) \cap \operatorname{LHS}(\mathcal{S})=\varnothing \Longrightarrow \mathcal{R}=\mathcal{S}$
(2) $\mathcal{R} \Longrightarrow * \mathcal{S}$ by induction on $|\operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})|$

- induction step:
suppose $\mathcal{R} \neq \mathcal{S} \Longrightarrow \mathcal{S}$ contains rewrite rule $u \rightarrow v$ with $u \in \operatorname{NF}(\mathcal{R})$ by (1)
$v \rightarrow_{\mathcal{R}}^{+} u \quad \Longrightarrow \quad v \nexists u \quad \Longrightarrow u \rightarrow v \in \mathcal{S}$ is reversible
$\mathcal{S} \Longrightarrow \mathcal{S}^{\prime}=(\mathcal{S} \backslash\{u \rightarrow v\})\{v \mapsto u\} \cup\{v \rightarrow u\} \quad \Longrightarrow \mathcal{S}^{\prime} \Longrightarrow \mathcal{S}$
claim: $|\operatorname{RHS}(\mathcal{S}) \backslash \mathrm{NF}(\mathcal{R})|>\left|\operatorname{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \mathrm{NF}(\mathcal{R})\right|$
- $v \in \operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})$ and $u \notin \operatorname{RHS}\left(\mathcal{S}^{\prime}\right) \backslash \operatorname{NF}(\mathcal{R})$
- $r \in \operatorname{RHS}(\mathcal{S})$ with $v \unlhd r$ is replaced by $r[u] \in \operatorname{RHS}\left(\mathcal{S}^{\prime}\right)$ but $r \in \operatorname{RHS}(\mathcal{S}) \backslash \operatorname{NF}(\mathcal{R})$
$\mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}^{\prime}$ by induction hypothesis $\Longrightarrow \mathcal{R} \Longrightarrow{ }^{*} \mathcal{S}$

Summary

given finite ground $\mathrm{ES} \mathcal{E}$ with k axioms

- every canonical TRS for \mathcal{E} is finite
- different canonical TRSs for \mathcal{E} have same number of rewrite rules
- total number of canonical TRSs for \mathcal{E} is bounded by 2^{k}
- every canonical TRS for \mathcal{E} can be generated by (ground) completion

Summary

given finite ground $\mathrm{ES} \mathcal{E}$ with k axioms

- every canonical TRS for \mathcal{E} is finite
- different canonical TRSs for \mathcal{E} have same number of rewrite rules
- total number of canonical TRSs for \mathcal{E} is bounded by 2^{k}
- every canonical TRS for \mathcal{E} can be generated by (ground) completion
- Snyder's transformation can generate all canonical TRSs for \mathcal{E} from any canonical TRS

Summary

given finite ground $\mathrm{ES} \mathcal{E}$ with k axioms

- every canonical TRS for \mathcal{E} is finite
- different canonical TRSs for \mathcal{E} have same number of rewrite rules
- total number of canonical TRSs for \mathcal{E} is bounded by 2^{k}
- every canonical TRS for \mathcal{E} can be generated by (ground) completion
- Snyder's transformation can generate all canonical TRSs for \mathcal{E} from any canonical TRS

Question

- can 2^{k} bound be derived from Snyder's transformation?

Outline

1. Introduction

2. Canonical Rewrite Systems
3. Snyder's Transformation

4. Ground AC Canonical Rewrite Systems

Definitions

- $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$ is set of AC symbols

Definitions

- $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$ is set of AC symbols
- $\sim_{A C}$ is equivalence relation on $\mathcal{T}(\mathcal{F})$ induced by

$$
f(x, y) \approx f(y, x) \quad f(f(x, y), z) \approx f(x, f(y, z)) \quad \text { for all } f \in \mathcal{F}_{\mathrm{AC}}
$$

Definitions

- $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$ is set of AC symbols
- $\sim_{A C}$ is equivalence relation on $\mathcal{T}(\mathcal{F})$ induced by

$$
f(x, y) \approx f(y, x) \quad f(f(x, y), z) \approx f(x, f(y, z)) \quad \text { for all } f \in \mathcal{F}_{\mathrm{AC}}
$$

$\Rightarrow \rightarrow_{\mathcal{R}} / \sim_{\mathrm{AC}}=\sim_{\mathrm{AC}} \cdot \rightarrow_{\mathcal{R}} \cdot \sim_{\mathrm{AC}}$

Definitions

- $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$ is set of AC symbols
$-\sim_{\mathrm{AC}}$ is equivalence relation on $\mathcal{T}(\mathcal{F})$ induced by

$$
f(x, y) \approx f(y, x) \quad f(f(x, y), z) \approx f(x, f(y, z)) \quad \text { for all } f \in \mathcal{F}_{\mathrm{AC}}
$$

- $\rightarrow_{\mathcal{R}} / \sim_{A C}=\sim_{A C} \cdot \rightarrow_{\mathcal{R}} \cdot \sim_{A C}=\rightarrow / \sim$

Definitions

- $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$ is set of AC symbols
- $\sim_{A C}$ is equivalence relation on $\mathcal{T}(\mathcal{F})$ induced by

$$
f(x, y) \approx f(y, x) \quad f(f(x, y), z) \approx f(x, f(y, z)) \quad \text { for all } f \in \mathcal{F}_{\mathrm{AC}}
$$

- $\rightarrow_{\mathcal{R}} / \sim_{\mathrm{AC}}=\sim_{\mathrm{AC}} \cdot \rightarrow_{\mathcal{R}} \cdot \sim_{\mathrm{AC}}=\rightarrow / \sim$
- TRS \mathcal{R} is AC terminating if \rightarrow / \sim is well-founded

Definitions

- $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$ is set of AC symbols
- $\sim_{A C}$ is equivalence relation on $\mathcal{T}(\mathcal{F})$ induced by

$$
f(x, y) \approx f(y, x) \quad f(f(x, y), z) \approx f(x, f(y, z)) \quad \text { for all } f \in \mathcal{F}_{\mathrm{AC}}
$$

- $\rightarrow_{\mathcal{R}} / \sim_{\mathrm{AC}}=\sim_{\mathrm{AC}} \cdot \rightarrow_{\mathcal{R}} \cdot \sim_{\mathrm{AC}}=\rightarrow / \sim$
- TRS \mathcal{R} is AC terminating if \rightarrow / \sim is well-founded
- TRS \mathcal{R} is AC confluent if $(\leftarrow \cup \rightarrow \cup \sim)^{*} \subseteq(\rightarrow / \sim)^{*} \cdot \sim \cdot{ }^{*}(\sim \backslash \leftarrow)$

Definitions

- $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$ is set of AC symbols
- $\sim_{A C}$ is equivalence relation on $\mathcal{T}(\mathcal{F})$ induced by

$$
f(x, y) \approx f(y, x) \quad f(f(x, y), z) \approx f(x, f(y, z)) \quad \text { for all } f \in \mathcal{F}_{\mathrm{AC}}
$$

- $\rightarrow_{\mathcal{R}} / \sim_{\mathrm{AC}}=\sim_{\mathrm{AC}} \cdot \rightarrow_{\mathcal{R}} \cdot \sim_{\mathrm{AC}}=\rightarrow / \sim$
- TRS \mathcal{R} is AC terminating if \rightarrow / \sim is well-founded
- TRS \mathcal{R} is AC confluent if $(\leftarrow \cup \rightarrow \cup \sim)^{*} \subseteq(\rightarrow / \sim)^{*} \cdot \sim \cdot{ }^{*}(\sim \backslash \leftarrow)$

Definitions

- $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$ is set of AC symbols
- \sim_{AC} is equivalence relation on $\mathcal{T}(\mathcal{F})$ induced by

$$
f(x, y) \approx f(y, x) \quad f(f(x, y), z) \approx f(x, f(y, z)) \quad \text { for all } f \in \mathcal{F}_{\mathrm{AC}}
$$

$\rightarrow \rightarrow_{\mathcal{R}} / \sim_{\mathrm{AC}}=\sim_{\mathrm{AC}} \cdot \rightarrow_{\mathcal{R}} \cdot \sim_{\mathrm{AC}}=\rightarrow / \sim$

- TRS \mathcal{R} is AC terminating if \rightarrow / \sim is well-founded
- TRS \mathcal{R} is AC confluent if $(\leftarrow \cup \rightarrow \cup \sim)^{*} \subseteq(\rightarrow / \sim)^{*} \cdot \sim \cdot^{*}(\sim \backslash \leftarrow)$
- TRS \mathcal{R} is AC reduced if for every rewrite rule $\ell \rightarrow r$ in \mathcal{R}
(1) $r \in \operatorname{NF}(\mathcal{R} / \mathrm{AC})$
(2) $\ell \in \operatorname{NF}((\mathcal{R} \backslash\{\ell \rightarrow r\}) / \mathrm{AC})$

Definitions

- $\mathcal{F}_{\mathrm{AC}} \subseteq \mathcal{F}$ is set of AC symbols
- \sim_{AC} is equivalence relation on $\mathcal{T}(\mathcal{F})$ induced by

$$
f(x, y) \approx f(y, x) \quad f(f(x, y), z) \approx f(x, f(y, z)) \quad \text { for all } f \in \mathcal{F}_{\mathrm{AC}}
$$

$\rightarrow \rightarrow_{\mathcal{R}} / \sim_{\mathrm{AC}}=\sim_{\mathrm{AC}} \cdot \rightarrow_{\mathcal{R}} \cdot \sim_{\mathrm{AC}}=\rightarrow / \sim$

- TRS \mathcal{R} is AC terminating if \rightarrow / \sim is well-founded
- TRS \mathcal{R} is AC confluent if $(\leftarrow \cup \rightarrow \cup \sim)^{*} \subseteq(\rightarrow / \sim)^{*} \cdot \sim \cdot^{*}(\sim \backslash \leftarrow)$
- TRS \mathcal{R} is AC reduced if for every rewrite rule $\ell \rightarrow r$ in \mathcal{R}
(1) $r \in \operatorname{NF}(\mathcal{R} / \mathrm{AC})$
(2) $\ell \in \operatorname{NF}((\mathcal{R} \backslash\{\ell \rightarrow r\}) / \mathrm{AC})$
- TRS \mathcal{R} is AC canonical if it is AC confluent, AC terminating and AC reduced

Example

$$
f(a, b) \approx d \quad f(b, c) \approx e \quad f \quad A C \text { symbol }
$$

Example

$$
f(a, b) \approx d \quad f(b, c) \approx e
$$

f AC symbol

admits five different AC canonical TRSs:

A	$\mathrm{f}(\mathrm{a}, \mathrm{b}) \xrightarrow{1} \mathrm{~d}$	$f(b, c) \xrightarrow{2} e$	$f(a, e) \xrightarrow{3} \mathrm{f}(\mathrm{c}, \mathrm{d})$
B	$f(a, b) \xrightarrow{1} d$	$f(b, c) \xrightarrow{2} e$	$f(a, e) \stackrel{3}{\longleftrightarrow^{*}} \mathrm{f}(\mathrm{c}, \mathrm{d})$
C	$f(a, b) \xrightarrow{1} d$	$f(\mathrm{~b}, \mathrm{c}) \stackrel{2}{\leftarrow} \mathrm{e}$	
D	$\mathrm{f}(\mathrm{a}, \mathrm{b}) \stackrel{1}{\leftarrow} \mathrm{~d}$	$f(b, c) \xrightarrow{2} e$	
E	$\mathrm{f}(\mathrm{a}, \mathrm{b}) \stackrel{1}{\leftarrow} \mathrm{~d}$	$f(\mathrm{~b}, \mathrm{c}) \stackrel{2}{\leftarrow} \mathrm{e}$	

Example

$$
f(a, b) \approx d \quad f(b, c) \approx e
$$

f AC symbol

admits five different AC canonical TRSs:

A	$\mathrm{f}(\mathrm{a}, \mathrm{b}) \xrightarrow{\text { l }} \mathrm{d}$	$f(b, c) \xrightarrow{2} e$	$f(a, e) \xrightarrow{3} \mathrm{f}(\mathrm{c}, \mathrm{d})$
B	$f(a, b) \xrightarrow{1} d$	$f(b, c) \xrightarrow{2} e$	$f(a, e) \stackrel{3}{\longleftrightarrow^{*}} \mathrm{f}(\mathrm{c}, \mathrm{d})$
C	$f(a, b) \xrightarrow{1} d$	$f(\mathrm{~b}, \mathrm{c}) \stackrel{2}{\longleftarrow} \mathrm{e}$	
D	$f(a, b) \stackrel{1}{\leftarrow} d$	$f(b, c) \xrightarrow{2} e$	
E	$\mathrm{f}(\mathrm{a}, \mathrm{b}) \stackrel{1}{\leftarrow} \mathrm{~d}$	$f(\mathrm{~b}, \mathrm{c}) \stackrel{2}{\longleftarrow} \mathrm{e}$	

- $A \stackrel{1}{\Longrightarrow} D$

Example

$$
f(a, b) \approx d \quad f(b, c) \approx e
$$

f AC symbol

admits five different AC canonical TRSs:

$$
\begin{array}{llll}
A & f(a, b) \xrightarrow{1} d & f(b, c) \xrightarrow{2} e & f(a, e) \xrightarrow{3} f(c, d) \\
B & f(a, b) \xrightarrow{1} d & f(b, c) \stackrel{2}{\longrightarrow} e & f(a, e) \stackrel{3}{\leftarrow} f(c, d) \\
C & f(a, b) \stackrel{1}{\longrightarrow} d & f(b, c) \stackrel{2}{\longleftrightarrow} e & \\
D & f(a, b) \stackrel{1}{\leftarrow} d & f(b, c) \stackrel{2}{\longleftrightarrow} e & \\
E & f(a, b) \stackrel{1}{\leftarrow} d & f(b, c) \stackrel{2}{\longleftarrow} e &
\end{array}
$$

- $A \stackrel{1}{\Longrightarrow} D$ because $f(c, d) \longrightarrow / \sim f(c, a, b) \xrightarrow{2} / \sim f(a, e)$

Example

$$
f(a, b) \approx d \quad f(b, c) \approx e
$$

f AC symbol

admits five different AC canonical TRSs:

$$
\begin{aligned}
& A \quad f(a, b) \xrightarrow{1} d \quad f(b, c) \xrightarrow{2} e \quad f(a, e) \xrightarrow{3} f(c, d) \\
& B \quad f(a, b) \xrightarrow{1} d \quad f(b, c) \xrightarrow{2} e \\
& C \quad f(a, b) \xrightarrow{1} d \quad f(b, c) \stackrel{2}{\longleftarrow} e \\
& \text { D } \\
& \text { D } f(a, b) \stackrel{1}{\leftarrow} d \quad f(b, c) \xrightarrow{2} e \\
& E \quad f(a, b) \stackrel{1}{\leftarrow} d \quad f(b, c) \stackrel{2}{\leftarrow} e \\
& \text { - } A \stackrel{1}{\Longrightarrow} D \text { because } f(c, d) \longrightarrow / \sim f(c, a, b) \xrightarrow{2} / \sim f(a, e) \\
& \text { - } C \stackrel{2}{\Longrightarrow} F=\{f(a, b) \xrightarrow{1} d, f(b, c) \xrightarrow{2} e\}
\end{aligned}
$$

Example

$$
f(a, b) \approx d \quad f(b, c) \approx e
$$

f AC symbol

admits five different AC canonical TRSs:

$$
\begin{aligned}
& A \quad f(a, b) \xrightarrow{1} d \quad f(b, c) \xrightarrow{2} e \quad f(a, e) \xrightarrow{3} f(c, d) \\
& B \quad f(a, b) \xrightarrow{1} d \quad f(b, c) \xrightarrow{2} e \\
& f(b, c) \stackrel{2}{\longleftarrow} e \\
& \text { D } \\
& f(a, b) \stackrel{1}{\leftarrow} d \quad f(b, c) \xrightarrow{2} e \\
& E \quad f(a, b) \stackrel{1}{\leftarrow} d \quad f(b, c) \stackrel{2}{\leftarrow} e \\
& \text { - } A \stackrel{1}{\Longrightarrow} D \text { because } f(c, d) \longrightarrow / \sim f(c, a, b) \xrightarrow{2} / \sim f(a, e) \\
& \text { • } C \stackrel{2}{\Longrightarrow} F=\{\mathrm{f}(\mathrm{a}, \mathrm{~b}) \xrightarrow{1} \mathrm{~d}, \mathrm{f}(\mathrm{~b}, \mathrm{c}) \xrightarrow{2} \mathrm{e}\} \text { not } \mathrm{AC} \text { confluent }
\end{aligned}
$$

Example

$$
f(a, b) \approx d \quad f(b, c) \approx e
$$

f AC symbol
admits five different AC canonical TRSs:

$$
\begin{aligned}
& A \quad f(a, b) \xrightarrow{1} d \quad f(b, c) \xrightarrow{2} e \quad f(a, e) \xrightarrow{3} f(c, d) \\
& B \quad f(a, b) \xrightarrow{1} d \quad f(b, c) \xrightarrow{2} e \\
& f(b, c) \stackrel{2}{\longleftarrow} e \\
& \text { D } \\
& f(a, b) \stackrel{1}{\leftarrow} d \quad f(b, c) \xrightarrow{2} e \\
& E \quad f(a, b) \stackrel{1}{\leftarrow} d \quad f(b, c) \stackrel{2}{\longleftarrow} e \\
& \text { - } A \stackrel{1}{\Longrightarrow} D \text { because } f(c, d) \longrightarrow / \sim f(c, a, b) \xrightarrow{2} / \sim f(a, e) \\
& \triangle C \stackrel{2}{\Longrightarrow} F=\{f(a, b) \xrightarrow{1} d, f(b, c) \xrightarrow{2} e\} \text { not } A C \text { confluent }
\end{aligned}
$$ orienting single $A C$ critical pair results in A or B

Example (cont'd)

Example (cont'd)

Remarks

- reduced ground TRSs need not be AC confluent

Example (cont'd)

Remarks

- reduced ground TRSs need not be AC confluent
- after resolving AC critical pairs, new AC critical pairs may arise

Example (cont'd)

Remarks

- reduced ground TRSs need not be AC confluent
- after resolving AC critical pairs, new AC critical pairs may arise
- transformation may turn AC canonical TRS into non AC terminating TRS

Example

TRS \mathcal{R}

$$
f(b, c) \xrightarrow{1} f(a, b)
$$

$$
f(c, d) \xrightarrow{2} f(d, a)
$$

with $A C$ symbol f is $A C$ canonical

Example

TRS \mathcal{R}

$$
f(b, c) \xrightarrow{1} f(a, b)
$$

$$
f(c, d) \xrightarrow{2} f(d, a)
$$

with AC symbol f is AC canonical, reversing rule 1 results in TRS \mathcal{S} :

$$
f(a, b) \longrightarrow f(b, c) \quad f(c, d) \longrightarrow f(d, a)
$$

Example

TRS \mathcal{R}

$$
f(b, c) \xrightarrow{1} f(a, b)
$$

$$
f(c, d) \xrightarrow{2} f(d, a)
$$

with AC symbol f is AC canonical, reversing rule 1 results in TRS \mathcal{S} :

$$
f(a, b) \longrightarrow f(b, c) \quad f(c, d) \longrightarrow f(d, a)
$$

\mathcal{S} is not AC terminating

$$
\mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{~d}) \rightarrow_{\mathcal{S} / \mathrm{AC}} \mathrm{f}(\mathrm{~b}, \mathrm{c}, \mathrm{~d}) \rightarrow_{\mathcal{S} / \mathrm{AC}} \mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{~d})
$$

Example

TRS \mathcal{R}

$$
f(b, c) \xrightarrow{1} f(a, b)
$$

$$
f(c, d) \xrightarrow{2} f(d, a)
$$

with AC symbol f is AC canonical, reversing rule 1 results in TRS \mathcal{S} :

$$
f(a, b) \longrightarrow f(b, c) \quad f(c, d) \longrightarrow f(d, a)
$$

\mathcal{S} is not AC terminating

$$
\mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{~d}) \rightarrow_{\mathcal{S} / \mathrm{AC}} \mathrm{f}(\mathrm{~b}, \mathrm{c}, \mathrm{~d}) \rightarrow_{\mathcal{S} / \mathrm{AC}} \mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{~d})
$$

Conclusion

Snyder's transformation is not useful in AC setting

Theorem (Marché 1991)

every AC canonical presentation of finite ground ES is finite

Theorem (Marché 1991)

every AC canonical presentation of finite ground ES is finite

Summary

given finite ground ES \mathcal{E} with k axioms

- every canonical TRS for \mathcal{E} is finite
- different canonical TRSs for \mathcal{E} have same number of rewrite rules
- total number of canonical TRSs for \mathcal{E} is bounded by 2^{k}
- every canonical TRS for \mathcal{E} can be generated by (ground) completion
- Snyder's transformation can generate all canonical TRSs for \mathcal{E} from any canonical TRS

Theorem (Marché 1991)

every AC canonical presentation of finite ground ES is finite

Summary

given finite ground ES \mathcal{E} with k axioms

- every canonical TRS for \mathcal{E} is finite
- different canonical TRSs for \mathcal{E} have same number of rewrite rules
- total number of canonical TRSs for \mathcal{E} is bounded by 2^{k}
- every canonical TRS for \mathcal{E} can be generated by (ground) completion
- Snyder's transformation can generate all canonical TRSs for \mathcal{E} from any canonical TRS

Theorem (Marché 1991)

every AC canonical presentation of finite ground ES is finite

Summary

given finite ground ES \mathcal{E} with k axioms

- every canonical TRS for \mathcal{E} is finite
- different canonical TRSs for \mathcal{E} have same number of rewrite rules
- total number of canonical TRSs for \mathcal{E} is bounded by 2^{k}
- every canonical TRS for \mathcal{E} can be generated by (ground) completion
- Snyder's transformation can generate all canonical TRSs for \mathcal{E} from any canonical TRS

Theorem (Marché 1991)

every AC canonical presentation of finite ground ES is finite

Summary

given finite ground ES \mathcal{E} with k axioms

- every canonical TRS for \mathcal{E} is finite
- different canonical TRSs for \mathcal{E} have same number of rewrite rules
- total number of canonical TRSs for \mathcal{E} is bounded by 2^{k}
- every canonical TRS for \mathcal{E} can be generated by (ground) completion
- Snyder's transformation can generate all canonical TRSs for \mathcal{E} from any canonical TRS

Theorem (Marché 1991)

every AC canonical presentation of finite ground ES is finite

Summary

given finite ground ES \mathcal{E} with k axioms

- every canonical TRS for \mathcal{E} is finite
- different canonical TRSs for \mathcal{E} have same number of rewrite rules
- total number of canonical TRSs for \mathcal{E} is bounded by 2^{k}
- every canonical TRS for \mathcal{E} can be generated by (ground) completion
- Snyder's transformation can generate all canonical TRSs for \mathcal{E} from any canonical TRS

Theorem (Marché 1991)

every AC canonical presentation of finite ground ES is finite

Summary

given finite ground ES \mathcal{E} with k axioms

- every canonical TRS for \mathcal{E} is finite
- different canonical TRSs for \mathcal{E} have same number of rewrite rules
- total number of canonical TRSs for \mathcal{E} is bounded by 2^{k}
- every canonical TRS for \mathcal{E} can be generated by (ground) completion
- Snyder's transformation can generate all canonical TRSs for \mathcal{E} from any canonical TRS

