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Two Papers

1 Wayne Snyder

A Fast Algorithm for Generating Reduced Ground Rewriting Systems
from a Set of Ground Equations

Journal of Symbolic Computation 15(4), pp. 415 – 450, 1993

2 Claude Marché

On Ground AC – Completion

Proc. 4th RTA, LNCS 488, pp. 411 – 422, 1991

Setting

given: finite set E of ground equations (with or without AC axioms)

ES

desired: canonical rewrite system R for E
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Definitions

TRS R is

1 right-reduced if r ∈ NF(R) for every rewrite rule ℓ→ r in R

2 left-reduced if ℓ ∈ NF(R \ {ℓ→ r}) for every rewrite rule ℓ→ r in R

3 reduced if it is both left-reduced and right-reduced

4 canonical if it is confluent, terminating and reduced

Definitions

TRSs R and S are

1 (conversion) equivalent if ↔∗
R = ↔∗

S

2 normalization equivalent if →!
R = →!

S
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Theorem (Métivier 1983)

A

normalization equivalent reduced TRSs are unique up to literal similarity

Theorem (Métivier 1983)

equivalent canonical TRSs compatible with same reduction order are literally similar

Theorem (Snyder 1993) B

reduced ground TRSs are canonical

Lemma (Hirokawa et al. 2019) C

if R and S are canonical TRSs such that NF(S) ⊆ NF(R) and →S ⊆ ↔∗
R then R and S are

normalization equivalent
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Known Results

(Snyder 1993)

1 congruence closure is efficient technique for solving word problems for ground ESs

2 completion can be tamed for ground ESs such that it always terminates in canonical TRS

3 every canonical presentation of ground ES can be obtained by ground completion

4 number of different canonical presentations for ground ES consisting of k equations is ⩽ 2k

Remarks

▶ results 2 and 3 have been formalized in Isabelle/HOL

▶ result 4 is based on detailed analysis of special structure-sharing dag

Definition

LHS(R) /RHS(R) denotes set of left-hand / right-hand sides of rules of TRS R

12th IWC 24 August 2023 Obergurgl 2. Canonical Rewrite Systems 7/21



Known Results (Snyder 1993)

1 congruence closure is efficient technique for solving word problems for ground ESs

2 completion can be tamed for ground ESs such that it always terminates in canonical TRS

3 every canonical presentation of ground ES can be obtained by ground completion

4 number of different canonical presentations for ground ES consisting of k equations is ⩽ 2k

Remarks

▶ results 2 and 3 have been formalized in Isabelle/HOL

▶ result 4 is based on detailed analysis of special structure-sharing dag

Definition

LHS(R) /RHS(R) denotes set of left-hand / right-hand sides of rules of TRS R

12th IWC 24 August 2023 Obergurgl 2. Canonical Rewrite Systems 7/21



Known Results (Snyder 1993)

1 congruence closure is efficient technique for solving word problems for ground ESs

2 completion can be tamed for ground ESs such that it always terminates in canonical TRS

3 every canonical presentation of ground ES can be obtained by ground completion

4 number of different canonical presentations for ground ES consisting of k equations is ⩽ 2k

Remarks

▶ results 2 and 3 have been formalized in Isabelle/HOL

▶ result 4 is based on detailed analysis of special structure-sharing dag

Definition

LHS(R) /RHS(R) denotes set of left-hand / right-hand sides of rules of TRS R

12th IWC 24 August 2023 Obergurgl 2. Canonical Rewrite Systems 7/21



Known Results (Snyder 1993)

1 congruence closure is efficient technique for solving word problems for ground ESs

2 completion can be tamed for ground ESs such that it always terminates in canonical TRS

3 every canonical presentation of ground ES can be obtained by ground completion

4 number of different canonical presentations for ground ES consisting of k equations is ⩽ 2k

Remarks

▶ results 2 and 3 have been formalized in Isabelle/HOL

▶ result 4 is based on detailed analysis of special structure-sharing dag

Definition

LHS(R) /RHS(R) denotes set of left-hand / right-hand sides of rules of TRS R

12th IWC 24 August 2023 Obergurgl 2. Canonical Rewrite Systems 7/21



Known Results (Snyder 1993)

1 congruence closure is efficient technique for solving word problems for ground ESs

2 completion can be tamed for ground ESs such that it always terminates in canonical TRS

3 every canonical presentation of ground ES can be obtained by ground completion

4 number of different canonical presentations for ground ES consisting of k equations is ⩽ 2k

Remarks

▶ results 2 and 3 have been formalized in Isabelle/HOL

▶ result 4 is based on detailed analysis of special structure-sharing dag

Definition

LHS(R) /RHS(R) denotes set of left-hand / right-hand sides of rules of TRS R

12th IWC 24 August 2023 Obergurgl 2. Canonical Rewrite Systems 7/21



Known Results (Snyder 1993)

1 congruence closure is efficient technique for solving word problems for ground ESs

2 completion can be tamed for ground ESs such that it always terminates in canonical TRS

3 every canonical presentation of ground ES can be obtained by ground completion

4 number of different canonical presentations for ground ES consisting of k equations is ⩽ 2k

Remarks

▶ results 2 and 3 have been formalized in Isabelle/HOL

▶ result 4 is based on detailed analysis of special structure-sharing dag

Definition

LHS(R) /RHS(R) denotes set of left-hand / right-hand sides of rules of TRS R

12th IWC 24 August 2023 Obergurgl 2. Canonical Rewrite Systems 7/21



Known Results (Snyder 1993)

1 congruence closure is efficient technique for solving word problems for ground ESs

2 completion can be tamed for ground ESs such that it always terminates in canonical TRS

3 every canonical presentation of ground ES can be obtained by ground completion

4 number of different canonical presentations for ground ES consisting of k equations is ⩽ 2k

Remarks

▶ results 2 and 3 have been formalized in Isabelle/HOL

▶ result 4 is based on detailed analysis of special structure-sharing dag

Definition

LHS(R) /RHS(R) denotes set of left-hand / right-hand sides of rules of TRS R

12th IWC 24 August 2023 Obergurgl 2. Canonical Rewrite Systems 7/21



Outline
1. Introduction

2. Canonical Rewrite Systems

3. Snyder’s Transformation

4. Ground AC Canonical Rewrite Systems

12th IWC 24 August 2023 Obergurgl 3. Snyder’s Transformation 8/21



Definitions

▶ t{r 7→ ℓ} denotes term obtained from t after replacing all subterms r by ℓ

▶ R{r 7→ ℓ} = {s{r 7→ ℓ} → t{r 7→ ℓ} | s→ t ∈ R} for TRS R

Definition (Snyder’s Transformation)

transformation

R⊎ {ℓ→ r} =⇒ R{r 7→ ℓ} ∪ {r → ℓ} (⋆)

provided r is no (proper) subterm of ℓ (rule ℓ→ r is reversible)

footnote (Snyder 1993)

The fact that this single transformation is sufficient to transform one reduced system into
any other can be proved formally, but the proofs are tedious, and so we have preferred to
present this intuitively.
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Example (Snyder 1993)

f(a) ≈ g(b,b) f(f(a)) ≈ a f(f(f(a))) ≈ a

g(b,h(a)) ≈ g(b,b) h(a) ≈ b i(f(a)) ≈ c

admits six different canonical TRSs:

f(g(b,b))
1−→ g(b,b)

f(a)
1−→ a f(a)

1−→ a

a
2−→ g(b,b)

2
=⇒ g(b,b)

2−→ a g(h(a),h(a))
2−→ a

h(g(b,b))
3−→ b

h(a)
3−→ b

3⇐⇒ b
3−→ h(a)

i(g(b,b))
4−→ c

i(a)
4−→ c i(a)

4−→ c~w�4

~w�4

~w�4

f(g(b,b))
1−→ g(b,b) f(a)

1−→ a f(a)
1−→ a

a
2−→ g(b,b)

2⇐⇒ g(b,b)
2−→ a g(h(a),h(a))

2−→ a

h(g(b,b))
3−→ b h(a)

3−→ b
3⇐⇒ b

3−→ h(a)

c
4−→ i(g(b,b)) c

4−→ i(a) c
4−→ i(a)
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Lemma

if R =⇒ S and R is canonical then S is canonical

and equivalent to R

Proof

R = R′ ⊎ {ℓ→ r} and S = R′{r 7→ ℓ} ∪ {r → ℓ} with r ̸⊴ ℓ

▶ S is right-reduced:

suppose t ∈ RHS(S) is reducible with rule u→ v ∈ S =⇒ t ⊵ u =⇒ u ̸= r

u→ v ∈ R′{r 7→ ℓ} =⇒ u = u′{r 7→ ℓ} and v = v′{r 7→ ℓ} with u′ → v′ ∈ R′

t = t′{r 7→ ℓ} with t′ ∈ RHS(R) =⇒ t′ ⊵ u′ =⇒ R is not right-reduced �
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Lemma

if R =⇒ S and R is canonical then S is canonical

and equivalent to R

Proof (cont’d)

R = R′ ⊎ {ℓ→ r} and S = R′{r 7→ ℓ} ∪ {r → ℓ} with r ̸⊴ ℓ

▶ S is right-reduced and left-reduced

:

consider t → u ∈ S and suppose t /∈ NF(S \ {t → u})

1 t = r /∈ NF(R′{r 7→ ℓ}) =⇒ r ⊵ v with v ∈ LHS(R′{r 7→ ℓ})
ℓ ̸⊴ v =⇒ v ∈ LHS(R′) ⊆ LHS(R) =⇒ R is not right-reduced �

2 t → u ∈ R′{r 7→ ℓ}
r ̸⊴ t =⇒ t /∈ NF(R′{r 7→ ℓ} \ {t → u})
t ▷ v with v→ w ∈ R′{r 7→ ℓ}
t = t′{r 7→ ℓ} and v = v′{r 7→ ℓ} with t′, v′ ∈ LHS(R′)

t′ ▷ v′ =⇒ R′ is not right-reduced �
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Theorem

if R and S are equivalent ground canonical TRSs then R =⇒∗ S

Proof

1 NF(R) ∩ LHS(S) = ∅ =⇒ R = S

NF(R) is closed under subterms =⇒ NF(R) ⊆ NF(S)

→R ⊆ ↔∗
S =⇒ R and S are normalization equivalent by lemma C

R = S by theorem A

2 R =⇒∗ S by induction on |RHS(S) \ NF(R) |

▶ base case: RHS(S) ⊆ NF(R)
suppose R ̸= S
u ∈ NF(R) for some u→ v ∈ S by 1 =⇒ v ∈ NF(R)
u↔∗

R v �
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Summary

given finite ground ES E with k axioms

▶ every canonical TRS for E is finite

▶ different canonical TRSs for E have same number of rewrite rules

▶ total number of canonical TRSs for E is bounded by 2k

▶ every canonical TRS for E can be generated by (ground) completion

▶ Snyder’s transformation can generate all canonical TRSs for E from any canonical TRS

Question

▶ can 2k bound be derived from Snyder’s transformation ?
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Definitions

▶ FAC ⊆ F is set of AC symbols

▶ ∼AC is equivalence relation on T (F) induced by

f(x, y) ≈ f(y, x) f(f(x, y), z) ≈ f(x, f(y, z)) for all f ∈ FAC

▶ →R/∼AC = ∼AC · →R · ∼AC

= →/∼

▶ TRS R is AC terminating if →/∼ is well-founded

▶ TRS R is AC confluent if (← ∪ → ∪ ∼)∗ ⊆ (→/∼)∗· ∼ · (→/∼)∗ AC Church–Rosser

▶ TRS R is AC reduced if for every rewrite rule ℓ→ r in R
1 r ∈ NF(R /AC)

2 ℓ ∈ NF((R \ {ℓ → r}) /AC)

▶ TRS R is AC canonical if it is AC confluent, AC terminating and AC reduced
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▶ TRS R is AC canonical if it is AC confluent, AC terminating and AC reduced
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Example

f(a,b) ≈ d f(b, c) ≈ e f AC symbol

admits five different AC canonical TRSs:

A f(a,b)
1−→ d f(b, c)

2−→ e f(a, e)
3−→ f(c,d)

B f(a,b)
1−→ d f(b, c)

2−→ e f(a, e)
3←− f(c,d)

C f(a,b)
1−→ d f(b, c)

2←− e

D f(a,b)
1←− d f(b, c)

2−→ e

E f(a,b)
1←− d f(b, c)

2←− e

▶ A
1

=⇒ D because f(c,d) −→ /∼ f(c, a,b)
2−→ /∼ f(a, e)

▶ C
2

=⇒ F = {f(a,b) 1−→ d, f(b, c)
2−→ e} not AC confluent

orienting single AC critical pair results in A or B
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Example (cont’d)

A C

D B

E

3

2

1 2

1
1

2

Remarks

▶ reduced ground TRSs need not be AC confluent

▶ after resolving AC critical pairs, new AC critical pairs may arise

▶ transformation may turn AC canonical TRS into non AC terminating TRS
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Example

TRS R

f(b, c)
1−→ f(a,b) f(c,d)

2−→ f(d, a)

with AC symbol f is AC canonical

, reversing rule 1 results in TRS S :

f(a,b) −→ f(b, c) f(c,d) −→ f(d, a)

S is not AC terminating

f(a,b,d) →S/AC f(b, c,d) →S/AC f(a,b,d)

Conclusion

Snyder’s transformation is not useful in AC setting
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Theorem (Marché 1991)

every AC canonical presentation of finite ground ES is finite

Summary

given finite ground ES E with k axioms

AC

▶ every canonical TRS for E is finite

✓

▶ different canonical TRSs for E have same number of rewrite rules

×

▶ total number of canonical TRSs for E is bounded by 2k

×

▶ every canonical TRS for E can be generated by (ground) completion

?

▶ Snyder’s transformation can generate all canonical TRSs for E from any canonical TRS

×
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