On Confluence Criteria for Non-terminating Abstract Rewriting Systems

levgen lvanov

IWC 2023

1. Motivation & main problem

Motivation: ARS in non-discrete process modeling

Definition

An abstract rewriting system (ARS) is a pair (X, \rightarrow) , where

- X is a set
- \rightarrow is a binary relation on X (*reduction*)
- ARS from reachability relations on state spaces of nondeterministic dynamical systems
 - elements are states
 - $x \rightarrow^* x'$ implies that x, x' can be joined by a **trajectory**
- ARS from causality relations on event structures
 - elements are events
 - $e \rightarrow^* e'$ implies that e causally precedes e'

NOTE: above and on subsequent slides:

- $\rightarrow^+~$ denotes the transitive closure of $\rightarrow~$
- $ightarrow^*$ denotes the reflexive transitive closure of ightarrow

Example of type 1: ARS from reachability

• Consider a nondeterministic hybrid system:

Example of type 1: illustration of a run (partial)

Define an ARS (S, \rightarrow) such that

- $S = [0, +\infty) \times \mathbb{R}$ (continuous state space)
- $(y_1, v_1) \rightarrow (y_2, v_2)$, if (y_2, v_2) can be **reached** from (y_1, v_1)
 - either via continuous evolution within one discrete state,
 - or as a result of a single discrete transition between discrete states (that may coincide)

Example of type 1: continuous state space

Consider an ARS $(E, \rightarrow)^1$, where

•
$$E = \{(x, t) \in \mathbb{R} \times \mathbb{R} \mid t \leq 0\}$$

•
$$(x,t) \rightarrow (x',t') \Leftrightarrow (t'-t) > 0 \land (t'-t)^2 - (x'-x)^2 \ge 0.$$

Interpretation:

- x, t are **space** and **time** coordinates
- E is a "region of spacetime"
- \rightarrow is the strict causal precedence between events in (1+1)-dimensional Minkowski spacetime, restricted to *E*

¹Similar examples in computer science can be constructed using e.g.: F. Mattern. *On the relativistic structure of logical time in distributed systems*

Example of type 2: illustration

of direct successors

- When discussing ARS, textbooks and monographs on rewriting systems often **give priority** to ARS with properties most relevant to modeling of discrete processes, e.g. termination, countability, etc.
- Such properties **often do not hold** for ARS that arise from **continuous** and **discrete-continuous** process models.
- We suppose that this inhibits new applications of the theory of rewriting systems, e.g. in the domain of cyber-physical systems (CPS).

• Newman's lemma is a widely known confluence condition:

a terminating ARS is confluent if it is locally confluent²

• However, it depends on the **termination** assumption:

 (X, \rightarrow) is *terminating*, if there is *no* infinite reduction sequence $x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow ...$ (where $x_i \in X$)

- This often **does not hold** for ARS that arise from continuous / hybrid systems.
- We propose some ways in which Newman's lemma can be "freed" of the termination assumption.

²E.g.: P. Malbos. Lectures on Algebraic Rewriting, 2019

2. Preliminaries - part 1

Recall: inductive ARS

Definition

An ARS (X, \rightarrow) is **inductive**, if for every reduction sequence $x_1 \rightarrow x_2 \rightarrow ...$ there exists $x \in X$ such that $x_n \rightarrow^* x$ for all n.

Recall: Newman's counterexample

Widely known example³ (due to Newman) of a relation that is
acyclic, inductive, locally confluent, but *not* confluent

- reducible elements
- irreducible elements
- → reductions
- ... infinite continuation (not shown)

Formalization: (X, \rightarrow) , $X = \{a, b, 0, 1, 2, ...\}$, a = -1, b = -2

• $(2n) \rightarrow a$, $(2n+1) \rightarrow b$, $n \rightarrow (n+1)$ for n = 0, 1, 2, ...

³G. Huet. *Confluent reductions: Abstract properties and applications to term rewriting systems*, JACM, 1980

Newman's counterexample in order-theoretic terms

- In the (pre)ordered set (X, →*) there is an infinite chain with two (incomparable) minimal upper bounds.
- It is easy to see that local confluence is not sufficient to guarantee that they have a common upper bound.

Given chain $\{x_i \mid i=1,2,...\}$ without greatest element in the sense of the (pre)order ->*

Incomparable minimal upper bounds of the chain

Strict inductivity

Definition

An ARS (X, \rightarrow) is strictly inductive, if every nonempty chain in the preordered set (X, \rightarrow^*) has a *least* upper bound

- reducible elements
- irreducible elements
- reductions
- ... infinite continuation (not shown)

Formalization: (X, \rightarrow) , $X = \{a, b, 0, 1, 2, ...\}$, a = -1, b = -2, $a \rightarrow b$, $(2n) \rightarrow a$, $(2n+1) \rightarrow b$, $n \rightarrow (n+1)$ for n = 0, 1, 2, ...

Strengthened Newman's counterexample

The *strict* inductivity assumption is **not** sufficient to guarantee the equivalence "local confluence \Leftrightarrow confluence".

Example (Strengthened Newman's counterexample)

Consider an ARS (P, \rightarrow) , where

 $P = \mathbb{R} imes \mathbb{R} imes (\omega + 1)$

and $(x, y, n) \rightarrow (x', y', n')$ iff one of the following holds:

• $n < \omega \land n' = n + 1 \land |x' - x| < y'/2^{n'} \land 0 < y' < y$

•
$$n < \omega \land n' = \omega \land x' = x \land 0 = y' < y.$$

Then (P, \rightarrow) is

• acyclic,

- strictly inductive,
- Iocally confluent,

but is not confluent.

Strengthened Newman's counterexample illustration

Theorem (Newman's lemma for possibly nonterminating ARS) Let (X, \rightarrow) be an acyclic, strictly inductive ARS with at most countable set of irreducible elements. Then (X, \rightarrow) is confluent if and only if it is locally confluent.

We checked this fact in Isabelle 2022 proof assistant using a formalization of ARS notions from:

I. Ivanov. *Formalization of Generalized Newman's Lemma*, 2023, http://doi.org/10.5281/zenodo.7855691

3. Preliminaries - part 2

Recall: Noetherian induction

Definition

ARS (X,→) has sound Noetherian induction principle (sound NIP), if for every S ⊆ X,
if ∀x ∈ X ((∀y ∈ X (x →⁺ y ⇒ y ∈ S)) ⇒ x ∈ S),
then S = X

It is well known⁴ that

 (X, \rightarrow) is terminating $\Leftrightarrow (X, \rightarrow)$ has sound NIP.

Induction step: check that the orange element (\bullet) is in *S*, assuming that green elements (\bullet) are in *S*

⁴P. Malbos. Lectures on Algebraic Rewriting, 2019

More induction principles

56

⁵J.C. Raoult. *Proving open properties by induction*. Information processing letters, 29(1):19–23, 1988

⁶P. Clark. *The instructor's guide to real induction*. Mathematics Magazine, 92(2):136–150, 2019

Inductive reasoning for real numbers

Example. Show that if

$$\frac{dy}{dx}=1-xy,\quad y(0)=1,$$

then

$$y(x) \ge 1$$
 for all $x \in [0, 1]$.

Solution:

$$y(x) = e^{-x^2/2} \left(1 + \sqrt{2} \int_0^{x/\sqrt{2}} e^{t^2} dt \right)$$

• Plot:

Inductive reasoning for real numbers

"**Base case**" : $y(0) \ge 1$ holds "**Step**" : Let $x_0 \in [0, 1)$. Assume that $y(x_0) \ge 1$.

- if $y(x_0) > 1$, then (by continuity) y(x) > 1 for all $x \in [x_0, x + \epsilon)$ for a sufficiently small $\epsilon > 0$.
- if $y(x_0) = 1$: $y'(x_0) = 1 x_0 \cdot (1) > 0$ and $y(x) \ge 1$ in some right neighborhood of x_0 .

How to complete the proof ?

One of the variants⁷:

A subset $S \subseteq [a, b]$ (where a < b are real) is *inductive*, if:

- **2** if $a \le x < b$ and $x \in S$, then $[x, y] \subseteq S$ for some y > x
- if $a < x \le b$ and $[a, x) \subseteq S$, then $x \in S$.

Induction principle:

$$S \subseteq [a, b]$$
 is inductive iff $S = [a, b]$

In the example above one can take

$$a = 0, b = 1, S = \{x \in [0, 1] \mid y(x) \ge 1\}$$

The principle can be used in **ODE invariance axiomatization**⁸.

⁷P. Clark. *The Instructor's Guide to Real Induction*, 2012

⁸A. Platzer, Yong Kiam Tan. *Differential Equation Invariance Axiomatization: The Impressive Power of Differential Ghosts*, LICS'18, 2018.

Let (X, \leq) be a poset. A predicate ("property") $P: X \rightarrow Bool$ is

• inductive, if

$$\forall y ((\forall x(y < x \Rightarrow P(x)) \Rightarrow P(y))$$

open, if for each nonempty chain C ⊆ X,
 if C has a least upper bound x* and P(x*) = true
 then P(x) for some x ∈ C.

Theorem⁹ (Raoult). In a cpo, an inductive and open property is true everywhere.

⁹J.C. Raoult. *Proving open properties by induction*. Information processing letters, 29(1):19–23, 1988

Topology on ARS

Let (X, \rightarrow) be an ARS.

Definition

• A set $A \subseteq X$ is **closed**, if

for every nonempty chain C in the preordered set (X, \rightarrow^*) ,

if $C \subseteq A$ and C has a least upper bound $x \in X$ in the sense of the preordered set (X, \rightarrow^*) , then $x \in A$

2 A set
$$A \subseteq X$$
 is **open**, if $X \setminus A$ is closed.

Proposition

If (X, \rightarrow) is a terminating ARS, then every set $A \subseteq X$ is open (and closed).

Examples of closed and open sets

Consider an ARS (X, \rightarrow) , where

• X = [0, 1] (real unit interval)

• \rightarrow is the **standard order** \leq on real numbers restricted to *X* Then:

- every subset $A \subseteq X$ is a **chain**
- {1} is closed: every nonempty chain in {1} contains only 1, so its least upper bound is 1, and 1 ∈ {1}
- {1} is *not* open: 1 ∈ {1} can be approached from below using a nonempty chain of elements outside {1}, e.g.

 $0.9,\ 0.99,\ 0.999,\ldots$

• the set (0, 1) is **open**: no number in (0, 1) can be approached from below using a nonempty chain that has no elements in (0, 1).

4. Main results^{*}

^{*}Based on the work: I. Ivanov. *Generalized Newman's Lemma for Discrete and Continuous Systems*, FSCD 2023

Definition

An ARS (X, \rightarrow) has sound open induction principle (sound OIP), if for every open $S \subseteq X$,

$$\begin{array}{ll} \text{if} & \forall x \in X \; ((\forall y \in X \; (x \rightarrow^+ y \Rightarrow y \in \mathcal{S})) \Rightarrow x \in \mathcal{S}), \\ \text{then} \; \; \mathcal{S} = X \end{array}$$

Proposition

For any ARS (X, \rightarrow) the following conditions are **equivalent**:

- (X, \rightarrow) is strictly inductive and acyclic
- (X, \rightarrow) has sound open induction principle.

Some examples of strictly inductive ARS

- finite ARS
- terminating ARS
- dcpos (for a dcpo (X, ≤), either ≤, or a corresponding strict order < can be considered as reduction relation), e.g.

([0, 1], <), where [0, 1] is the real unit interval and < is the standard strict order on real numbers, restricted to [0, 1]

Definition

An ARS (X, \rightarrow) is **openly normalizing**, if (X, \rightarrow) is normalizing and for each $x, x' \in X$ such that x' is a normal form of x, the set

 $\{y \in X \mid x \to^* y \text{ and } x' \text{ is the only normal form of } y\}$

is **open** in $\{y \in X \mid x \to^* y\}$, considered as an induced preordered subset of (X, \to^*) .

Proposition

A confluent ARS is (weakly) normalizing if and only if it is openly normalizing.

Normalization notions

Recall: "Spacetime ARS"

- boundaries of sets of direct successors

Theorem

For any ARS (X, \rightarrow) with sound open induction principle the following conditions are equivalent:

- (X, \rightarrow) is confluent
- (X, \rightarrow) is locally confluent and openly normalizing.

Theorem

For any countable ARS (X, \rightarrow) with sound open induction principle the following conditions are equivalent:

- (X, \rightarrow) is confluent
- (X, \rightarrow) is locally confluent.

Further generalization to all strictly inductive ARS

<u>Issue</u>: a confluence criterion based on local confluence does *not* handle well cases when a reduction relation \rightarrow

- has cycles $(x \rightarrow^+ x)$
- is transitive, or includes a "large" transitive (sub)relation:

$$r \subseteq \rightarrow \land r^+ = r$$

Quasi-irreducibility

Let ARS (X, \rightarrow) be an ARS and $x, x' \in X$.

- x is reducible, if $\exists x' \in X \ x \to x'$
- *x* is **irreducible**, if *x* is not reducible.

Definition

1 *x* is quasi-irreducible, if $\forall y \in X (x \rightarrow^* y \Rightarrow y \rightarrow^* x)$

- 2 x' is a **quasi-normal form (QNF)** of x, if $x \rightarrow^* x'$ and x' is quasi-irreducible
- 3 x, x' are QNF-equivalent, if $\{y \in X \mid y \text{ is a QNF of } x\} = \{y \in X \mid y \text{ is a QNF of } x'\}$

Generalization of open normalization

Definition

An ARS (X, \rightarrow) is

- **Quasi-normalizing**, if for each x ∈ X there exists x' ∈ X such that x' is a quasi-normal form of x.
- **2** openly quasi-normalizing, if (X, \rightarrow) is quasi-normalizing and for each $x, x' \in X$ such that x' is a quasi-normal form of x, the set

 $\{y \in X \mid x \rightarrow^* y \land y \text{ and } x' \text{ are QNF-equivalent } \}$

is **open** in $\{y \in X \mid x \to^* y\}$, considered as an induced preordered subset of (X, \to^*) .

Proposition

An **acyclic** ARS is **openly quasi-normalizing** if and only if it is **openly normalizing**.

Definition

An ARS (X, \rightarrow) is **quasi-locally confluent**, if for each $a \in X$ there exists $S \subseteq \{x \in X \mid a \rightarrow^+ x\}$ such that :

two-consistency condition:

 $\forall b, c \in S \ \exists d \in X \ (b \rightarrow^* d \land c \rightarrow^* d)$

coinitiality condition:

$$orall x \in X \ (a
ightarrow^+ x \ \Rightarrow \ (x
ightarrow^* a) \lor \ arpropto (\exists b \in S \ b
ightarrow^* x \land
eg(b
ightarrow^* a)) \)$$

Theorem (Generalized Newman's lemma)

A strictly inductive ARS is confluent if and only if it is openly quasi-normalizing and quasi-locally confluent.

Example

Consider an ARS (X, \rightarrow) , where • $X = [0, 1] \times [0, 1]$ (where [0, 1] denotes a real interval) • $(x, y) \rightarrow (x', y') \Leftrightarrow$ $(x < x' \lor (x = x' \land y' < y \land (x < 1 \lor y < 1))) \land$ $(x-y \leq x'-y') \land (x=y \Rightarrow x'=y') \land (x < y \Rightarrow x' < y').$ (0,1)(1,1)Legend: sides and diagonal of the unit square examples of reducible elements of Xirreducible elements of X examples of reductions example of a set S for the point D(it is assumed that D is not in S, but E and F are in S) (0,0)(1.0)Ĥ

Ordinary Newman's lemma from generalized one

- A strictly inductive ARS is confluent if and only if it is openly quasi-normalizing and quasi-locally confluent (Generalized Newman's lemma)
- any terminating ARS is strictly inductive and acyclic
- any terminating ARS is openly quasi-normalizing
- any locally confluent acyclic ARS is quasi-locally confluent

So any locally confluent and terminating ARS is confluent.

Importance of conditions of the main result

- a strictly inductive ARS is confluent if and only if it is openly quasi-normalizing and quasi-locally confluent – wrong (Newman's counterexample¹¹)
- a strictly inductive ARS is confluent if and only if it is openly quasi-normalizing and quasi-locally confluent – wrong ("Spacetime ARS")
- a strictly inductive ARS is confluent if and only if it is openly quasi-normalizing and quasi-locally confluent – wrong (Hindley's counterexample¹¹)

¹¹G. Huet. *Confluent reductions: Abstract properties and applications to term rewriting systems*, JACM, 1980

Formalization and machine-checked proofs

- We formalized the main result in **Isabelle 2022** proof assistant using **HOL** logic.
- Formalization includes **definitions**, **auxiliary facts**, and a **formal proof** of generalized Newman's lemma which can be checked automatically.
- Isabelle theory file (.thy):

I. Ivanov. *Formalization of Generalized Newman's Lemma*, 2023, http://doi.org/10.5281/zenodo.7855691