

History and Future of the CeTA-Certifier for CoCo (Including a New Decision Procedure for Pattern Completeness)

René Thiemann

Supported by the Austrian Science Fund (FWF) project I 5943 International Workshop on Confluence, August 24, 2023

The Certification Approach for CoCo

- machine checked theorems
- verified algorithms that check correct application of confluence techniques

History of CeTA 1/3

- 2009: first release of CeTA: Certified Termination Analysis
 - main development by Sternagel and T.
 - focus on termination techniques for TRSs
- 2009 : CeTA checks proofs in termination competition (2022: CeTA can check more than 90 % of classified TRSs in "TRS standard")
- 2011: new release of CeTA: Certified Tool Assertions
 - support of $SN(\rightarrow_{\mathcal{R}}) = SN(\stackrel{i}{\rightarrow}_{\mathcal{R}})$ for locally confluent overlay systems
 - support of confluence via Newman's lemma
- 2012: non-confluence support, weak orthogonality
- 2012: CeTA is used in demo certification track in CoCo
- 2013 : CeTA is participating in certification track in CoCo

History of CeTA 2/3

- many confluence contributions from UIBK \ T. ۲
 - Felgenhauer •
 - Middeldorp •
 - Nagele •
 - Sternagel ٠
 - Winkler
 - Zankl
- covering

innsbruck

- modularity
- layer framework
- rule labeling
- almost parallel closed
- unraveling
- infeasibility, including ordered completion

History of CeTA 3/3

- latest contributions (2022, 2023)
 - Kohl, Middeldorp (CPP and ITP 2023): almost development closed
 - Kim, T. (unpublished): criteria based on parallel critical pairs
 - Kim, Kohl, Middeldorp, T.: support for commutation
- CoCo 2022
 - winner TRS (CSI): 68 / 100
 - certified: 51 / 100
- CoCo 2023

niversität

- winner TRS: 71 / 100
- certified: 60 / 100

- winner COM (CoLL): 58 / 85 certified: 0 / 85
- winner commutation: 63 / 85 certified: 26 / 85
- many thanks to all confluence tool authors that teamed with CeTA
 - ACP, ConCon, CSI, Hakusan, nonreach

Design of CeTA

- try to make certificate generation easy \Longrightarrow small certificates
- try to make certificate checking robust → flexible check-functions
- example: check that certain critical pairs are joinable in some way
 - CeTA: verified algorithm to compute critical pairs
 - confluence tools might slightly deviate
 - CeTA: check that variant of every non-trivial critical pair exists in certificate
- TRS example:

 $egin{aligned} f(x,a) &
ightarrow b \ f(x,y) &
ightarrow g(y,x) \end{aligned}$

- CeTA: *CP* = {(b,g(a,x1)), (g(a,x1),b), (b,b), (g(x1,x2), g(x1,x2))}
- certificate 1: *CP* = {(g(a, x47), b), (b, g(a, x23))}
- certificate 2: $CP = \{(b, g(a, u)), (b, f(g(y, x), a))\}$
- certificate 3: *CP* = {(g(a, v), b), (iwc2023, cocoweb)}

Design of CeTA

- try to make certificate generation easy \implies small certificates
- try to make certificate checking robust \Longrightarrow flexible check-functions
- example: check that certain critical pairs are joinable in some way
 - consider rule labeling with parallel critical pairs in commutation version
 - required decrease for parallel critical pair $t \xrightarrow{\mathcal{R}_k} \longleftrightarrow \xrightarrow{\varepsilon}_{\mathcal{S}_m} u$:

$$t\left(_{\mathcal{R}_{$$

for $n = \max(k, m)$ and Toyama-restriction on $\mathcal{R}_{<k} \leftarrow +$ -step

checker variant 1: breadth-first search with limit on number of steps

- trivial certificate
- breadth-first search might become time-critical: $c_1 + c_2 + c_3 + c_4 \leqslant \textit{limit}$
- cannot deal with conversions very well (extra variables will not be instantiated)

Design of CeTA

- try to make certificate generation easy \Longrightarrow small certificates
- try to make certificate checking robust → flexible check-functions
- example: check that certain critical pairs are joinable in some way
 - required decrease for parallel critical peak $t \xrightarrow{\mathcal{R}_{\nu}} \underbrace{\leftarrow} \cdot \xrightarrow{\varepsilon} \mathcal{S}_{m} u$:

 $t\left(_{\mathcal{R}_{< k}} \leftarrow \cup \longrightarrow_{\mathcal{S}_{< k}}\right)^{*} \cdot \xrightarrow{}_{H \rightarrow \mathcal{S}_{\leq m}} \cdot \left(_{\mathcal{R}_{< n}} \leftarrow \cup \longrightarrow_{\mathcal{S}_{< n}}\right)^{*} \cdot \underset{\mathcal{R}_{\leq k}}{\longrightarrow} \left(_{\mathcal{R}_{< m}} \leftarrow \cup \longrightarrow_{\mathcal{S}_{< m}}\right)^{*} u$

for $n = \max(k, m)$ and Toyama-restriction on $\mathcal{R}_{\leq k} \leftarrow \mathbb{H}$ -step

- checker variant 2: require intermediate terms $t, s_1, s_2, s_3, \ldots, s_{42}, u$
 - non-verbose certificate: no specification of applied rules
 - automatic partitioning of sequence
 - flexible: step from s_i to s_{i+1} might be single step or parallel step

Automatic Partitioning

required join

$$s_{0} \left({}_{_{\mathcal{R}_{1}}} \leftarrow \cup \rightarrow _{\mathcal{R}_{2}} \right)^{*} \cdot \xrightarrow{}_{_{\mathcal{H}}} \mathcal{R}_{3} \cdot \left({}_{_{\mathcal{R}_{4}}} \leftarrow \cup \rightarrow _{\mathcal{R}_{5}} \right)^{*} \cdot {}_{_{\mathcal{R}_{6}}} \leftarrow * \cdot \left({}_{_{\mathcal{R}_{7}}} \leftarrow \cup \rightarrow _{\mathcal{R}_{8}} \right)^{*} s_{n}$$

- provided: sequence of terms s₀, s₁, s₂, s₃, ..., s_n
- greedy approach

universität

innsbruck

- try to find maximum *i* such that $s_0 \left(\underset{\mathcal{R}_1}{\ldots} \leftarrow \cup \longrightarrow \underset{\mathcal{R}_2}{\longrightarrow} \right)^* s_i$
 - i = 0
 - if $s_i \longrightarrow_{\mathcal{R}_i^{-1} \cup \mathcal{R}_2} s_{i+1}$ then i := i + 1 and iterate (decision procedure for \longrightarrow)

- otherwise return i
- continue with checking $s_i \longrightarrow_{\mathcal{R}_2} \cdots$
 - if $s_i \longrightarrow_{\mathcal{R}_2} s_{i+1}$ then i := i+1
- continue with checking $s_i (_{\mathcal{R}} \leftarrow \cup \longrightarrow_{\mathcal{R}_s})^* \cdot \ldots$
- finally check $s_i = s_n$
- greedy approach is complete since all relations in join are reflexive

Future Work: Certification of Ground Confluence

- ground confluence: given many-sorted TRS \mathcal{R} over $\mathcal{T}(\mathcal{F}, \mathcal{V})$, determine whether \mathcal{R} is confluent on ground terms
- internally it is based on
 - rewriting induction (certification is ongoing work with Aoto, Kim, and Yamada), and
 - quasi-reducibility as a criterion to ensure sufficient completeness

Quasi-Reducibility and Pattern Completeness

- general idea: is program sufficiently defined, i.e., does not get stuck
- setup: fix TRS \mathcal{R} , split signature into $\mathcal{F} = \mathcal{C} \uplus \mathcal{D}$
- basic ground terms: $\mathcal{B}(\mathcal{C},\mathcal{D}) = \{f(t_1,\ldots,t_n) \mid f \in \mathcal{D}, t_1,\ldots,t_n \in \mathcal{T}(\mathcal{C})\}$
- quasi-reducibility:
- strong quasi-reducibility:
- pattern completeness:
- pattern completeness \implies strong quasi-reducibility \implies quasi-reducibility
- free constructors ($\mathcal{T}(\mathcal{C}) \subseteq NF$): pattern completeness = quasi-reducibility

 $\forall t \in \mathcal{B}(\mathcal{C}, \mathcal{D}). \exists s. t \rightarrow_{\mathcal{R}} s$ $\forall t \in \mathcal{B}(\mathcal{C}, \mathcal{D}). \exists s. t \stackrel{\leq 1}{\Rightarrow}_{\mathcal{R}} s$

 $\forall t \in \mathcal{B}(\mathcal{C}, \mathcal{D}). \exists s. t \xrightarrow{\varepsilon}_{\mathcal{R}} s$

Quiz

• consider TRS with signature $\mathcal{D} = \{even\}$ and $\mathcal{C} = \{true, false, 0, s\}$

 $even(0) \rightarrow true$ $even(s(0)) \rightarrow false$ $even(s(s(x))) \rightarrow even(x)$

- is it quasi-reducible? strongly-reducible? pattern complete?
- if the sorts are true : Bool, false : Bool, 0 : Num, and s : Num \rightarrow Num
- if we add $p: Num \rightarrow Num$ to \mathcal{C} and add further rules?

 $even(p(0)) \rightarrow false$ $even(p(p(x))) \rightarrow even(x)$ $s(p(x)) \rightarrow x$ $p(s(x)) \rightarrow x$

Quasi-Reducibility: Basic Ground Terms are Reducible

- decidable, co-NP complete [Kapur, Narendran]
- ensuring quasi-reducibility via Kapur, Narendran requires enumeration of exponentially many terms
- for left-linear TRSs, decidable via tree-automata:

 $\mathcal{B}(\mathcal{C},\mathcal{D})\subseteq$ "terms that contain redex"

- contains expensive subset-check
- certification requires verified tree-automata library
- restriction to left-linear TRSs

Pattern Completeness: Basic Ground Terms have Root Redex

- for left-linear TRSs, decidable via tree-automata
- for left-linear TRSs, decidable via complement algorithm [Lazrek, Lescanne and Thiel]
- this talk: decision procedure for pattern completeness and for strong quasi-reducibility
 - does not require tree-automata techniques
 - inspired by matching algorithm
 - linear lower bound, exponential upper bound
 - no explicit computation of complements
 - no restriction to left-linear TRS
 - verified implementation in Isabelle/HOL (soundness, not complexity)
 - outperforms complement algorithm

The Algorithm

- modified matching algorithm
 - matching problem is finite set $mp = \{(t_1, \ell_1), \dots, (t_n, \ell_n)\}$ where t_i, ℓ_i are terms
 - ℓ_i is subterm of left-hand side of TRS:
 - modification: vars in t_i represent constr. ground terms: is $t_i\sigma$ matched by ℓ_i
 - notion: *mp* is solvable w.r.t. σ if there is γ such that $t_i \sigma = \ell_i \gamma$ for all *i*
 - \perp_{mp} is special matching problem that is never solvable
- pattern problem = disjunctive combination of matching problems
 - pattern problem is finite set $pp = \{mp_1, \dots, mp_k\}$ of matching problems
 - *pp* is solvable if for each constr. ground substitution σ , at least one of the matching problems *mp*_i is solved w.r.t. σ
 - T_{pp} is special pattern problem that is always solvable
- examples for three-rule even-TRS: basic-terms represented by even(y)
 - pattern completeness: pp :=
 {{(even(y), even(0))}, {(even(y), even(s(0)))}, {(even(y), even(s(s(x))))}}
 - strong quasi-reducibility: $pp \cup \{\{(y, even(0))\}, \{(y, even(s(0)))\}, \{(y, even(s(s(x))))\}\}$

is t_i matched by ℓ_i

Simplification Rules for Matching and Pattern Problems

- we transform matching problems (\rightarrow) and pattern problems (\Rightarrow)
- whenever mp
 ightarrow mp' then mp is solvable w.r.t. σ iff so is mp'
- whenever $pp \Rightarrow pp'$ then pp is solvable iff so is pp'

 $\begin{aligned} \{(f(t_1, \dots, t_n), f(\ell_1, \dots, \ell_n))\} & \uplus mp \to \{(t_1, \ell_1), \dots, (t_n, \ell_n)\} \cup mp \quad (\text{decompose}) \\ \{(f(\dots), g(\dots))\} & \uplus mp \to \bot_{mp} \quad \text{if } f \neq g \qquad (\text{clash}) \\ \{(t, x)\} & \uplus mp \to mp \quad \text{if } "x \notin mp" \qquad (\text{match}) \\ \{mp\} & \uplus pp \Rightarrow \{mp'\} \cup pp \quad \text{if } mp \to mp' \quad (\text{simp-mp}) \\ \{\bot_{mp}\} & \uplus pp \Rightarrow pp \qquad (\text{remove-mp}) \\ \{\emptyset\} & \uplus pp \Rightarrow \top_{pp} \qquad (\text{success}) \end{aligned}$

example (pattern completeness of three-rule even-TRS): pp

 $= \{\{(even(y), even(0))\}, \{(even(y), even(s(0)))\}, \{(even(y), even(s(s(x))))\}\} \\ \Rightarrow \{\{(y, 0)\}, \{(even(y), even(s(0)))\}, \{(even(y), even(s(s(x))))\}\} \\ \Rightarrow^{2} \{\{(y, 0)\}, \{(y, s(0))\}, \{(y, s(s(x)))\}\} \}$

Towards Instantiation

- current rules get stuck on {{(y, 0)}, {(y, s(0))}, {(y, s(s(x)))}}
- usual matching algorithm would indicate failure for all three matching problems
- here, **y** is variable, but represents an arbitrary constructor ground term
- \implies perform case-analysis by replacing y by all possible ground terms
 - *y* : Num
 - all constructor ground terms of sort Num can be represented as 0 or as s(z) for some fresh variable z
 - logically, we have to build a conjunction over all these cases: for each $\sigma \ldots$
 - \implies work on sets *P* of pattern problems; *P* is solvable iff each $pp \in P$ is solvable
 - define transformation rules \Rightarrow on sets of pattern problems
 - \perp_P denotes unsolvable set of pattern problems

Instantiation

universität

innsbruck

new rules for sets of pattern problems

 $\{pp\} \uplus P \Rightarrow \{pp'\} \cup P \qquad \text{if } pp \Rightarrow pp' \qquad (\text{simp-pp}) \\ \{\emptyset\} \uplus P \Rightarrow \bot_P \qquad (failure) \\ \{\top_{pp}\} \uplus P \Rightarrow P \qquad (remove-pp) \\ \{pp\} \uplus P \Rightarrow \{pp[x/c(\vec{xs})] \mid c \in C_{\tau}\} \cup P \quad \text{if } mp \in pp, (x, f(\ldots)) \in mp, \text{ and } x \in \mathcal{V}_{\tau} \\ (instantiate) \end{cases}$

• example (continued): $\{pp\} \Rightarrow^* \{\{\{(y,0)\}, \{(y,s(0))\}, \{(y,s(s(x)))\}\}\}$

 $\Rightarrow \{\{\{(0,0)\},\{(0,s(0))\},\{(0,s(s(x)))\}\}, \\ \{\{(s(z),0)\},\{(s(z),s(0))\},\{(s(z),s(s(x)))\}\}\} \}$

 $\Rightarrow \{\{\emptyset, \{(0, s(0))\}, \{(0, s(s(x)))\}\},\$

 $\{\{(s(z), 0)\}, \{(s(z), s(0))\}, \{(s(z), s(s(x)))\}\}\}$

- $\Rightarrow \{\top_{pp}, \{\{(s(z), 0)\}, \{(s(z), s(0))\}, \{(s(z), s(s(x)))\}\}\}$
- $\Rightarrow \{\{\{(s(z), 0)\}, \{(s(z), s(0))\}, \{(s(z), s(s(x)))\}\}\}$

Example – Finalized

$\{pp\} \Rrightarrow^* \{\{\{(s(z), 0)\}, \{(s(z), s(0))\}, \{(s(z), s(s(x)))\}\}\}$

- $\Rightarrow \{\{\perp_{mp}, \{(s(z), s(0))\}, \{(s(z), s(s(x)))\}\}\}$
- $\Rightarrow \{\{\{(s(z), s(0))\}, \{(s(z), s(s(x)))\}\}\}$
- $\Rightarrow^2 \{\{\{(z,0)\},\{(z,s(x))\}\}\}$
- $\Rightarrow \{\{\{(0,0)\},\{(0,s(x))\}\},\{\{(s(y),0)\},\{(s(y),s(x))\}\}\}$
- $\Rightarrow \{\{\emptyset, \{(0, s(x))\}\}, \{\{(s(y), 0)\}, \{(s(y), s(x))\}\}\}$
- $\Rightarrow \{\top_{pp}, \{\{(s(y), 0)\}, \{(s(y), s(x))\}\}\}$
- $\Rightarrow \{\{\{(s(y), 0)\}, \{(s(y), s(x))\}\}\}$
- $\Rightarrow \{\{\perp_{mp}, \{(\mathsf{s}(y), \mathsf{s}(x))\}\}\}$
- $\Rightarrow \{\{\{(\mathsf{s}(y),\mathsf{s}(x))\}\}\}$
- $\Rightarrow \{\{\{(y, x)\}\}\}$
- $\Rightarrow \{\{\emptyset\}\}$
- $\Rrightarrow \{\top_{pp}\}$

 $\Rightarrow \emptyset$

Properties

Theorem

- whenever $\{pp\} \Rightarrow^* \emptyset$ then pp is solvable
- whenever $\{pp\} \Rightarrow^* \perp_P$ then pp is not solvable
- \Rightarrow is terminating
- whenever pp is linear then normal forms of $\{pp\}$ w.r.t. \Rightarrow are either \emptyset or \bot_P

The General Case

niversität

- ⇒ might get stuck on non-linear inputs
- example: consider TRS with lhss $\{f(x, x, y), f(x, y, x), f(y, x, x)\}$
- {{{($f(x_1, x_2, x_3), f(x, x, y)$)}, {($f(x_1, x_2, x_3), f(x, y, x)$)}, {($f(x_1, x_2, x_3), f(y, x, x)$)}} $\Rightarrow^* {{{(<math>x_1, x_2, x_3$), {(x_1, x), (x_3, x)}, {(x_2, x), (x_3, x)}}
- general case requires three more rules

$$\begin{array}{ll} \{(t,x),(t',x)\} \uplus mp \to \bot_{mp} & \text{ if } t|_p = f(\dots) \neq g(\dots) = t'|_p & (\text{clash'}) \\ \{pp\} \uplus P \Rrightarrow \{pp[x/c(\vec{xs})] \mid c \in \mathcal{C}_{\tau}\} \cup P & (\text{instantiate'}) \\ & \text{ if } mp \in pp, \{(t,y),(t',y)\} \subseteq mp, t|_p = x \neq t'|_p, x \in \mathcal{V}_{\tau}, \text{ and } \tau \text{ is finite} \\ \{pp\} \uplus P \Rrightarrow \bot_P & \text{ if for each } mp \in pp \text{ there are } \{(t,y),(t',y)\} \subseteq mp & (\text{failure'}) \\ & \text{ such that } t|_p = x \neq t'|_p, x \in \mathcal{V}_{\tau} \text{ and } \tau \text{ is infinite} \end{array}$$

• \Rightarrow is still terminating; moreover *pp* is solvable iff $\{pp\} \Rightarrow^* \emptyset$

Example

innsbruck

- assume x_1, x_2, x_3 : Num, i.e., infinite sort $\{\{\{(x_1,x),(x_2,x)\},\{(x_1,x),(x_3,x)\},\{(x_2,x),(x_3,x)\}\}\} \Rightarrow \bot_P$
- assume x_1, x_2, x_3 : Bool, i.e., finite sort
 - $\{\{\{(x_1,x),(x_2,x)\},\{(x_1,x),(x_3,x)\},\{(x_2,x),(x_3,x)\}\}\}$
 - $\Rightarrow \{\{\{(\mathsf{true}, x), (x_2, x)\}, \{(\mathsf{true}, x), (x_3, x)\}, \{(x_2, x), (x_3, x)\}\}, \{(x_2, x), (x_3, x)\}\}, \{(x_3, x), (x_3, x)\}, \{(x_3, x), (x_3, x)\}, \{(x_3, x), (x_3, x)\}, \{(x_3, x), (x_3, x), (x_3, x)\}, \{(x_3, x), (x_3, x), (x_3, x), (x_3, x)\}, \{(x_3, x), (x_3, x), ($ $\{\{(false, x), (x_2, x)\}, \{(false, x), (x_3, x)\}, \{(x_2, x), (x_3, x)\}\}\}$
 - \Rightarrow {{{(true, x)}, {(true, x), (x_3, x)}, {(true, x), (x_3, x)}}, $\{\{(true, x), (false, x)\}, \{(true, x), (x_3, x)\}, \{(false, x), (x_3, x)\}\}, \}$ $\{\{(false, x), (x_2, x)\}, \{(false, x), (x_3, x)\}, \{(x_2, x), (x_3, x)\}\}\}$
 - $\Rightarrow^* \{\{\{(true, x), (x_3, x)\}, \{(false, x), (x_3, x)\}\}, \}$

 $\{\{(false, x), (x_2, x)\}, \{(false, x), (x_3, x)\}, \{(x_2, x), (x_3, x)\}\}\}$

 $\Rightarrow^* \{\{\{(false, x), (x_2, x)\}, \{(false, x), (x_3, x)\}, \{(x_2, x), (x_3, x)\}\}\} \Rightarrow^* \emptyset$

Proof of Termination.

niversität

- part 1: (instantiate) rule: instantiate (x, f(...)) by all $[x/c(\vec{xs})]$ for all $c \in C$
 - define difference measure $|t \ell|$ for term pairs (t, ℓ) of matching problems
 - $|\mathbf{x} \ell|$ is the number of function symbols in ℓ ,
 - $|f(t_1, ..., t_n) f(\ell_1, ..., \ell_n)| = \sum_{i=1}^n |t_i \ell_i|$, and
 - $|t \ell| = 0$ in all other cases.
 - define $|pp| = \sum_{mp \in pp, (t,\ell) \in mp} |t \ell|$
 - define $P \succ P'$ as $\{|pp| \mid pp \in P\} > mul \{|pp| \mid pp \in P'\}$
 - whenever $P \Rightarrow P'$ then $P \succeq P'$, and $P \succ P'$ for (instantiate)
- part 2: (instantiate') rule: instantiate $\{(t, y), (t', y)\}$ by all [x/c(xs)] if $t|_p = x \neq t'|_p$ if sort of x is finite
 - define |x| as maximal size of term of (finite) sort of x
 - define $|pp| = \sum_{x \in mp, \text{sort of } x \text{ is finite }} |x|$
 - define $P \succ P'$ as $\{|pp| \mid pp \in P\} >^{mul} \{|pp| \mid pp \in P'\}$
 - whenever $P \Rightarrow P'$ (except instantiate) then $P \succeq P'$, and $P \succ P'$ for (instantiate')
- part 3: remaining rules are trivially terminating

Auxiliary Algorithms

- technical precondition of decision procedure: each sort must be inhabited by constructor ground term
- figure out whether sorts are inhabited by constructor ground terms
 ⇒ easy marking algorithm to detect inhabited sorts
 - whenever $c : \sigma_1 \times \ldots \times \sigma_n \to \sigma \in C$ and all $\sigma_1, \ldots, \sigma_n$ are marked, then mark σ
 - iterate until no new sorts are marked
 - finally, sort σ is marked iff $\mathcal{T}(\mathcal{C})_{\sigma} \neq \emptyset$
- tried adjustment to detect infinite sorts, by marking recursive constructors
 - \implies not successful, e.g., consider mutually recursive sorts
 - \implies perhaps encode as lasso problem in graph
- however, simple marking algorithm is successful by marking finite sorts
 - whenever $c : \sigma_1 \times \ldots \times \sigma_n \to \sigma \in C$ and all $\sigma_1, \ldots, \sigma_n$ are marked for all $c \in C_{\sigma}$, then mark σ
 - iterate until no new sorts are marked
 - finally, sort σ is marked iff $|\mathcal{T}(\mathcal{C})_{\sigma}| < \infty$

Experimental Results

see demo

Summary

- history of CeTA, including new developments in 2022 and 2023
- small certificates for joins via greedy partitioning algorithm
- novel decision procedure for pattern completeness
 - verified in Isabelle
 - based on IsaFoR and Yamada's library on sorted terms
 - 2,800 lines: main algorithm
 - 385 lines: checking that sorts are inhabited + decide whether sort is infinite
- future work in Isabelle/HOL (with Dohan and Akihisa): verify rewriting induction rules in sorted setting for certifying ground confluence proofs of AGCP

Questions?

ISR 2024 – 14th International School on Rewriting

- August 25 September 1, 2024, Obergurgl, Austria
- three tracks
 - (A) introductory course to first-order term rewriting
 - (B) introductory course to lambda-calculus and type theory
 - (C) advanced courses on recent developments and applications
- lecturers

nnsbruck

- Aart Middeldorp (A)
- Herman Geuvers (B)
- Niels van der Weide (B)
- Frédéric Blangui (C)
- Ugo Dal Lago (C)
- Nao Hirokawa (C)
- Cynthia Kop (C)
- Sarah Winkler (C)

http://cl-informatik.uibk.ac.at/isr24/