Confluence of a Computational Lambda
Calculus for Higher-Order Relational Queries

Claudio Sacerdoti Coen Riccardo Treglia
IWC 23 - Obergurgl, 23/08/2023

Universita di Bologna

1. Starting Point and Theoretical Introduction
2. Syntax and Reduction
3. Decreasing Diagrams and Labelling Speculation

4. Proof of Confluence

2/19

Introduction

Our Starting Point

[W. Ricciotti, J. Cheney - Strongly Normalizing Higher-Order Relational Queries]

The Nested Relational Calculus (NRC) provides a principled
foundation for integrating database queries into PL.

It is easy to implement a terminating rewriting algorithm for
normalizing NRC queries to flat relational queries, which can
be translated to idiomatic SQL queries.

Our ongoing work

A monadic calculus mirroring NRC
Define a reduction theory and prove it confluent

Non-idempotent intersection type assignment system

3/19

Computational Monads

A monad over a category of domains D is a triple (T,][], *)

Objects

D is the type of a value;
TD is the type of computations (possibly with effects) over D.

4/19

Computational Monads

A monad over a category of domains D is a triple (T,][], *)

Objects

D is the type of a value;
TD is the type of computations (possibly with effects) over D.

Operators

[]:D— TD (Haskell: return);
*:TD — (D — TD) — TD (Haskell: >>=).

4/19

The monadic approach

The computational A-calculus, was introduced as a metalanguage
to describe computational effects in programming languages.

5/19

The monadic approach

The computational A-calculus, was introduced as a metalanguage
to describe computational effects in programming languages.

At a semantic level, it relies on the categorical notion of monad.

f: A— TB where T is a monad

5/19

The monadic approach

The computational A-calculus, was introduced as a metalanguage
to describe computational effects in programming languages.

In my previous works (see e.g. IWC'20, IWC'21), the
computational core A\, was presented.

Computational core

~
~

Plotkin's call-by-value A-calculus + monad operators

5/19

The monadic approach

The computational A-calculus, was introduced as a metalanguage
to describe computational effects in programming languages.

In this works, the computational core), is extended with specific
operations to handle with tables, such as:

Join tables
Say: 'this is a table' ... aka reflection

The inverse of reflection: reification

AsaL

~
~

computational core + (list) monad operators + reify/reflect tables

5/19

SQL)-calculus

Definition (Term syntax)
Val: V.W == x| .M
Com: M,N := [V]|MxV

6/19

SQL)-calculus

Definition (Term syntax)

Val: VW == x| Xx.M| (M)
Com: M,N

[VIIMxV | MyM|)|!V

6/19

Reduction and Equational Theory

Definition (Reduction)
The relation —)., is the union of the following binary relations over

Com:
Be [VI* MM 5, M{V/x}
o) (L*XxM)xAy.N +—, Lxdx.(MxAy.N) for x & fv(N)

)

)

) (MW N)*xAx.P =y, (MxAx.P)W (N % Ax.P)
W,) M*Ax.(NWP) M % Ax.N) & (M % Ax.P)

)

)

)

\
—~

0% Ax.M g
Mxdx.0
(M)

N
ESS

7/19

Reduction and Equational Theory

Definition (Reduction)
The relation — ¢y, is the union of the following binary relations over Com:

=

) [VI*Ax.M —p M{V/x}

o) (LxXx.-M)xAy.N s L*xAx.(Mx*Ay.N) for x & fv(N)
) (MBN)*AP >y (M Ax.P)W (N Ax.P)

D) M A (NUP) e (MxAx.N) W (M % Ax.P)

1) DxAx.M g, 0

2) MxAx.0 g, 0

! M) +—1 M

=2 s & &

The reduction — e is the contextual closure of Asq. under
computational contexts, where such contexts are mutually defined with
value contexts as follows:

Vo= (va) | Ax.C| (C)

Ci={com) | V]| C*xV | MxV|COM|MuC|IV
7/19

We equip the calculus with an equational theory for multisets,
taken from [Ricciotti and Cheney, 22].

Definition (Equational theory)
Be E an equational theory defined, as follows, plus associativity:

Comm) MWN = NwWM Empty) 0w = 0

Note: 0 W M # M

8/19

Modularizing Confluence - Getting rid of the equational theory

Definition
Given a reduction relation — and an equational theory =g, we say

that — commutes over =g if for all M, N, L such that

M =g N — L, there exists P such that M — P =g L.
Lemma (Hindley-Rosen)

Let R1 and R> be relations on the set A. If R1 and R> are
confluent and commute with each other, then R1 U R> is
confluent.

We will exploit that to focus just on the reduction relation while

proving confluence.

Hence, by since =g commutes with —, one needs just the
confluence of — to assert the confluence of — modulo E.

9/19

Decreasing diagram

Definition (Decreasing, van Oostrom)

An rewriting relation R is locally decreasing if there exist a
presentation (R, {—;}ic/) of R and a well-founded strict order >
on [such that:

M

Vi j viij} e

Decreasing diagram

Definition (Decreasing, van Oostrom)

An rewriting relation R is locally decreasing if there exist a
presentation (R, {—}ic/) of R and a well-founded strict order >
on / such that:

where VIi={icl|3kel k> i}.
Theorem (van Oostrom)

Every locally decreasing rewriting relation R is confluent.

10/19

Which order?

Considers diagrams involving rules of W, or W, vs. (); and (5, it is
easy to perceive how these rules should be ordered as labels of a
potential labellings. Consider, for instance, the following diagram:

(M1 (] M2) *)\X.@ U’ (M1 *)\X.@) W (M2 */\X.@)
by .

A

In fact, the rules concerning the empty table, (); and (), can be
bottom elements of the order over labels we are searching for.

11/19

Which order? 4, vs. o

When it comes to comparing W, vs. o, the situation is a bit trickier
because W; only quasi-commutes over o. The following diagrams
shows that W; must be made greater than o.

((Ll&JLg)*/\X.M)*/\y.N > (Ll&JL2)*)\X.(M*)\y.N)
ag
W, IR
\
— 2 —
M - e - - I - My
W o

where My = ((Ly * Ax.M) & (Lo x Ax.M)) * Ay.N),
My = (L1 % Ax.(Mx Ay.N)) & (Lo % Ax.(M % Ay.N)).

12/19

Which order?: (. vs. W,

The case for Sc vs W, shows the need for a non-trivial approach,
since depending in which context the rules are applied, we need
either 5. > W, or B < W,.

Be

[V] % Ax.(N & P)

B

(V] * Ax.N) & ([V] * Ax.P) ,7;7, N{V/x} & P{V/x}

(Nw P){V/x}

.but ... [VA] * Az([2] 2) —2» [Va] % Az.([z] 2)
Vi = Ax.(M % Ay.(Ny & Nb)) 56\ iﬂc
Vs = Ax.((M % Ay.Ny) & (M % Ay. o)) |
v
Vi« Wi i. [Va] * Vo

13/19

(M % Ax.(Ny & Np)) * Ay.L ——————————————— M x Ax.((N; & Np) * Ay.L)

o
W, Wy
A\
((M % Ax.Np) & (M * Ax.Np)) = Ay.L M x Ax.((Ng * Ay.L) W (Ny x Ay.L))
] 1 Wy
A\

:
:
v

(M % Ax.Np) * Ay.L) & (M * Ax.Np) = Ay.L) 727> (M x Ax.(Ny * Ay.L)) & (M % Ax.(Ny = Ay.L))

o

14/19

Multi-reduction

The confluence proof we are going to sketch avoids the issue with
Bc vs. W, reported above by considering multiple reductions.

A parallel rewrite step is a sequence of reductions at a set P of
parallel positions, ensuring that the result does not depend upon a
particular sequentialization of P.

Given a reduction step v we define its parallel version as Par~.

15/19

Generalized version of ¥, and W,

The case for W, vs. W, can seem innocent, for example:

(My & Mp) % x. (N & Np) ——————= (M1 % Ax.(Ny &))& (Mg % Ax.(Ny &)
"
!

W, W, '2

v
(My & Mo) % Ax.Ny) @ (My & Mp) % Ax.No) j 77777777777 - M =g M
where
M = (My 5 Ax.N1) W (My % Ax.Np) W (My % Ax.Na) W (My % Ax.Ny)
and

M = (Mg % Ax.Ny) & (My % Ax. Na) & (Ma % Ax. Ny) & (Ma % Ax. o)

16/19

Generalized version of ¥, and W,

(Ml (G M2 W Mg) *)\X.(Nl (O] N2) m > /\7,/1
/ |
W, W, '3
- 4 \
My - mmmeeeee .
T

M’y = (MyxAx. (NN,))W (MaxAx.(NyWNo))W (MaxAx.(NywN,))
and
My = ((My W My & M3) 5« Ax.Np) & (M & Mo & M3) * Ax.Np)

16/19

Definition (Generalized union step)
Let us define as generalized W, and W, steps as follows

Genw;) (...(MyWM)W...w" M,)*Ax.N > Gent,
(M5 Ax.N) & (Ma % Ax.N) & ... & (M, % Ax.)

Gen,) MxAx.(...(Nt W Np)W... W N,) > Genl,
(M5 ANy) W (M Ax.No) & ... 6 (M % Ax.N,,)

17/19

Route to Confluence

We are now ready to state our main result:

Theorem (Confluence)
AsqL is confluent.

1. All reduction rules strongly commute with !.

2. Under the following order for parallel rewriting steps, all
remaining rules are decreasing:
Par3. > Paro > ParGend, > ParGent; > (); > ()»

The diagrams for the cases Pary; vs Pard, and Part, vs (); only
hold up to E.
Eg, 09 0x X MIN —y,—5 00

3. Confluence is obtained combining the previous points.

18/19

Consequences

By confluence, A\sq. normal forms (if exist) are unique.

Moreover, it is possible to characterize normal forms and provide a

translation from Asq. to NRC.

Since Asqu normal forms (up to E) are translated in NRC normal

forms, they are queries, as expected.

19/19

Conclusion

Considerations:

Lambda SQL is not just a computational calculus, but has
also a co-computational flavour: it is a case study to
understand how merge computational effects with
co-computational one, also at a semantic level.

The union operator behaves like a delimited control operator
that duplicate resources:

this has led some intricacies that made difficult to find a
proper label.

Future work:
Unified way as done in [Felgenhauer and van Oostrom, 13].

Merging this method with [FGdLT22].

