Confluence of a Computational Lambda Calculus for Higher-Order Relational Queries

Claudio Sacerdoti Coen <u>Riccardo Treglia</u> IWC 23 - Obergurgl, 23/08/2023

Università di Bologna

- 1. Starting Point and Theoretical Introduction
- 2. Syntax and Reduction
- 3. Decreasing Diagrams and Labelling Speculation
- 4. Proof of Confluence

Our Starting Point

[W. Ricciotti, J. Cheney - Strongly Normalizing Higher-Order Relational Queries]

The Nested Relational Calculus (NRC) provides a principled foundation for integrating database queries into PL. It is easy to implement a terminating rewriting algorithm for normalizing NRC queries to flat relational queries, which can be translated to idiomatic SQL queries.

Our ongoing work

A monadic calculus mirroring NRC Define a reduction theory and prove it confluent A monad over a category of domains $\mathcal D$ is a triple ($\mathcal T, [\cdot], \star)$

Objects

- *D* is the type of a value;
- TD is the type of computations (possibly with effects) over D.

A monad over a category of domains $\mathcal D$ is a triple ($\mathcal T, [\cdot], \star)$

Objects

D is the type of a value;

TD is the type of computations (possibly with effects) over D.

Operators

$$\begin{split} & [\cdot]: D \to \textbf{TD} & (\text{Haskell: return}); \\ & \star: \textbf{TD} \to (D \to \textbf{TD}) \to \textbf{TD} & (\text{Haskell: } >>=). \end{split}$$

At a semantic level, it relies on the categorical notion of monad.

 $f: A \rightarrow \mathbf{T}B$ where **T** is a monad

In my previous works (see e.g. IWC'20, IWC'21), the computational core $\lambda_{\rm p}$ was presented.

Computational core

 \approx

Plotkin's call-by-value λ -calculus + monad operators

In this works, the computational core λ_{\circ} is extended with specific operations to handle with tables, such as:

Join tables Say: 'this is a table' ... aka reflection The inverse of reflection: reification

 λ_{SQL}

\approx

computational core + (list) monad operators + reify/reflect tables

Definition (Term syntax) $Val: V, W ::= x \mid \lambda x.M$ $Com: M, N ::= [V] \mid M \star V$

Definition (Term syntax) $Val: V, W ::= x | \lambda x.M | \langle \langle M \rangle \rangle$ $Com: M, N ::= [V] | M \star V | M \uplus M | \emptyset | !V$

Definition (Reduction) The relation $\rightarrow_{\lambda_{SQL}}$ is the union of the following binary relations over Com:

Definition (Reduction) The relation $\rightarrow_{\lambda_{SQL}}$ is the union of the following binary relations over *Com*:

The reduction $\rightarrow_{\lambda_{SQL}}$ is the contextual closure of λ_{SQL} under computational contexts, where such contexts are mutually defined with value contexts as follows:

$$V ::= \langle \cdot_{Val} \rangle \mid \lambda x.C \mid \langle \langle C \rangle \rangle$$
$$C ::= \langle \cdot_{Com} \rangle \mid [V] \mid C \star V \mid M \star V \mid C \uplus M \mid M \uplus C \mid !V$$

We equip the calculus with an equational theory for multisets, taken from [Ricciotti and Cheney, 22].

Definition (Equational theory) Be *E* an equational theory defined, as follows, plus associativity:

Comm)
$$M \uplus N = N \uplus M$$
 Empty) $\emptyset \uplus \emptyset = \emptyset$

Note: $\emptyset \uplus M \neq M$

Definition

Given a reduction relation \rightarrow and an equational theory $=_E$, we say that \rightarrow commutes over $=_E$ if for all M, N, L such that $M =_E N \rightarrow L$, there exists P such that $M \rightarrow P =_E L$.

Lemma (Hindley-Rosen)

Let \mathcal{R}_1 and \mathcal{R}_2 be relations on the set A. If \mathcal{R}_1 and \mathcal{R}_2 are confluent and commute with each other, then $\mathcal{R}_1 \cup \mathcal{R}_2$ is confluent.

We will exploit that to focus just on the reduction relation while proving confluence.

Hence, by since $=_E$ commutes with \rightarrow , one needs just the confluence of \rightarrow to assert the confluence of \rightarrow modulo *E*.

Definition (Decreasing, van Oostrom)

An rewriting relation \mathcal{R} is *locally decreasing* if there exist a presentation $(R, \{\rightarrow_i\}_{i \in I})$ of \mathcal{R} and a well-founded strict order > on I such that:

$$\langle \stackrel{\cdot}{i} \cdot \stackrel{\cdot}{j} \rangle \subseteq \langle \stackrel{*}{\langle \lor i} \rangle \cdot \stackrel{=}{j} \cdot \langle \stackrel{*}{\langle \lor ij} \rangle \cdot \langle \stackrel{=}{i} \cdot \langle \stackrel{*}{\langle \lor j} \rangle$$
,

where $\forall \overline{I} = \{i \in I \mid \exists k \in \overline{I}. k > i\}.$

Definition (Decreasing, van Oostrom)

An rewriting relation \mathcal{R} is *locally decreasing* if there exist a presentation $(R, \{\rightarrow_i\}_{i \in I})$ of \mathcal{R} and a well-founded strict order > on I such that:

$$\overleftarrow{i} \cdot \overrightarrow{j} \subseteq \overleftarrow{\langle \forall i \rangle} \cdot \xrightarrow{=}_{j} \cdot \overleftarrow{\langle \forall i j \rangle} \cdot \xrightarrow{=}_{i} \cdot \overleftarrow{\langle \forall j \rangle} ,$$

where $\forall \overline{I} = \{i \in I \mid \exists k \in \overline{I}. \ k > i\}.$

Theorem (van Oostrom)

Every locally decreasing rewriting relation $\mathcal R$ is confluent.

In fact, the rules concerning the empty table, \emptyset_1 and \emptyset_2 , can be bottom elements of the order over labels we are searching for.

Which order?: β_c vs. \uplus_r

(

The case for β_c vs \uplus_r shows the need for a non-trivial approach, since depending in which context the rules are applied, we need either $\beta_c > \uplus_r$ or $\beta_c < \uplus_r$.

$$\begin{array}{c} \dots \text{ but } \dots \\ V_1 = \lambda x.(M \star \lambda y.(N_1 \uplus N_2)) \\ V_2 = \lambda x.((M \star \lambda y.N_1) \uplus (M \star \lambda y.N_2)) \\ \end{array} \begin{array}{c} \left| V_1 \right| \star \lambda z.([z] \star z) & \stackrel{\oplus r}{\longrightarrow} [V_2] \star \lambda z.([z] \star z) \\ \beta_c \\ [V_1] \star V_1 & \stackrel{\oplus r}{\longrightarrow} [V_2] \star V_2 \end{array} \right|$$

The confluence proof we are going to sketch avoids the issue with β_c vs. \uplus_r reported above by considering *multiple reductions*.

A **parallel rewrite step** is a sequence of reductions at a set P of **parallel** positions, ensuring that the result does not depend upon a particular sequentialization of P.

Given a reduction step γ we define its parallel version as **Par** γ .

where

 $\bar{M} \equiv (M_1 \star \lambda x.N_1) \uplus (M_2 \star \lambda x.N_1) \uplus (M_1 \star \lambda x.N_2) \uplus (M_2 \star \lambda x.N_2)$ and

 $\bar{\bar{M}} \equiv (M_1 \star \lambda x.N_1) \uplus (M_1 \star \lambda x.N_2) \uplus (M_2 \star \lambda x.N_1) \uplus (M_2 \star \lambda x.N_2)$

and

 $\bar{M'}_2 \equiv ((M_1 \uplus M_2 \uplus M_3) \star \lambda x. N_1) \uplus ((M_1 \uplus M_2 \uplus M_3) \star \lambda x. N_2)$

Definition (Generalized union step)

 $\begin{aligned} \mathbf{Gen} & \uplus_I \end{pmatrix} \ (\dots (M_1 \uplus M_2) \uplus \dots \uplus M_n) \star \lambda x.N & \mapsto_{\mathbf{Gen} \uplus_I} \\ & (M \star \lambda x.N) \uplus (M_2 \star \lambda x.N) \uplus \dots \uplus (M_n \star \lambda x.N) \end{aligned}$

 $\begin{aligned} \mathbf{Gen} & \uplus_r) \quad M \star \lambda x. (\dots (N_1 \uplus N_2) \uplus \dots \uplus N_n) & \mapsto_{\mathbf{Gen} \uplus_r} \\ & (M \star \lambda x. N_1) \uplus (M \star \lambda x. N_2) \uplus \dots \uplus (M \star \lambda x. N_n) \end{aligned}$

We are now ready to state our main result:

Theorem (Confluence) λ_{SOI} is confluent.

1. All reduction rules strongly commute with !.

2. Under the following order for parallel rewriting steps, all remaining rules are decreasing:

 $\operatorname{Par}_{\beta_c} > \operatorname{Par}_{\sigma} > \operatorname{ParGen}_{\forall_r} > \operatorname{ParGen}_{\forall_l} > \emptyset_1 > \emptyset_2$

The diagrams for the cases $\operatorname{Par} \oplus_I \operatorname{vs} \operatorname{Par} \oplus_r$ and $\operatorname{Par} \oplus_r \operatorname{vs} \emptyset_1$ only hold up to *E*.

$$\mathsf{E.g.}, \ \emptyset_{\ \emptyset_1} \leftarrow \emptyset \star \lambda x. M \uplus N \to_{\uplus_r} \to^2_{\emptyset_1} \emptyset \uplus \emptyset.$$

3. Confluence is obtained combining the previous points.

By confluence, λ_{SQL} normal forms (if exist) are unique.

Moreover, it is possible to characterize normal forms and provide a translation from λ_{SQL} to *NRC*.

Since λ_{SQL} normal forms (up to *E*) are translated in NRC normal forms, they are queries, as expected.

Conclusion

Considerations:

Lambda SQL is not just a computational calculus, but has also a co-computational flavour: it is a case study to understand how merge computational effects with co-computational one, also at a semantic level.

The union operator behaves like a delimited control operator that duplicate resources: this has led some intricacies that made difficult to find a proper label.

Future work:

Unified way as done in [Felgenhauer and van Oostrom, 13]. Merging this method with [FGdLT22].