Confluence of a Computational Lambda Calculus for Higher-Order Relational Queries

Claudio Sacerdoti Coen Riccardo Treglia
IWC 23 - Obergurgl, 23/08/2023
Università di Bologna

Contents

1. Starting Point and Theoretical Introduction
2. Syntax and Reduction
3. Decreasing Diagrams and Labelling Speculation
4. Proof of Confluence

Introduction

Our Starting Point

[W. Ricciotti, J. Cheney - Strongly Normalizing Higher-Order Relational Queries]
The Nested Relational Calculus (NRC) provides a principled foundation for integrating database queries into PL.
It is easy to implement a terminating rewriting algorithm for normalizing NRC queries to flat relational queries, which can be translated to idiomatic SQL queries.

Our ongoing work

A monadic calculus mirroring NRC
Define a reduction theory and prove it confluent
Non-idempotent intersection type assignment system

Computational Monads

A monad over a category of domains \mathcal{D} is a triple $(T,[\cdot], \star)$

Objects

D is the type of a value;
$T D$ is the type of computations (possibly with effects) over D.

Computational Monads

A monad over a category of domains \mathcal{D} is a triple $(T,[\cdot], \star)$

Objects

D is the type of a value;
$T D$ is the type of computations (possibly with effects) over D.

Operators

[•]: $D \rightarrow T D$
(Haskell: return);
$\star: T D \rightarrow(D \rightarrow T D) \rightarrow T D$
(Haskell: $\gg=$).

The monadic approach

The computational λ-calculus, was introduced as a metalanguage to describe computational effects in programming languages.

The monadic approach

The computational λ-calculus, was introduced as a metalanguage to describe computational effects in programming languages.

At a semantic level, it relies on the categorical notion of monad.

$$
f: A \rightarrow \mathbf{T} B \text { where } \mathbf{T} \text { is a monad }
$$

The monadic approach

The computational λ-calculus, was introduced as a metalanguage to describe computational effects in programming languages.

In my previous works (see e.g. IWC'20, IWC'21), the computational core λ_{\circ} was presented.

Computational core

\approx
Plotkin's call-by-value λ-calculus + monad operators

The monadic approach

The computational λ-calculus, was introduced as a metalanguage to describe computational effects in programming languages.

In this works, the computational core λ_{0} is extended with specific operations to handle with tables, such as:

Join tables
Say: 'this is a table' ... aka reflection
The inverse of reflection: reification
λ_{SQL}
\approx
computational core + (list) monad operators + reify/reflect tables

SQL λ-calculus

Definition (Term syntax)

$$
\begin{aligned}
& \text { Val: } V, W \\
& \text { Com: } M, N:=x \mid \lambda x \cdot M \\
&:=[V] \mid M \star V
\end{aligned}
$$

SQL λ-calculus

Definition (Term syntax)

$$
\begin{array}{rll}
\text { Val: } & V, W & ::=x|\lambda x \cdot M|\langle\langle M\rangle\rangle \\
\text { Com: } & M, N & ::=[V]|M \star V| M \uplus M|\emptyset|!V
\end{array}
$$

Reduction and Equational Theory

Definition (Reduction)

The relation $\rightarrow_{\lambda_{S Q L}}$ is the union of the following binary relations over Com:

$$
\begin{array}{rrlll}
\left.\beta_{c}\right) & {[V] \star \lambda x \cdot M} & \mapsto_{\beta_{c}} & M\{V / x\} & \\
\sigma) & (L \star \lambda x \cdot M) \star \lambda y \cdot N & \mapsto_{\sigma} & L \star \lambda x \cdot(M \star \lambda y \cdot N) & \text { for } x \notin \mathrm{fv}(N) \\
\left.\uplus_{1}\right) & (M \uplus N) \star \lambda x \cdot P & \mapsto_{\uplus_{1}} & (M \star \lambda x \cdot P) \uplus(N \star \lambda x \cdot P) & \\
\left.\uplus_{r}\right) & M \star \lambda x \cdot(N \uplus P) & \mapsto_{\uplus_{r}} & (M \star \lambda x \cdot N) \uplus(M \star \lambda x . P) & \\
\left.\emptyset_{1}\right) & \emptyset \star \lambda x \cdot M & \mapsto_{1} & \emptyset & \\
\left.\emptyset_{2}\right) & M \star \lambda x \cdot \emptyset & \mapsto_{g_{2}} & \emptyset & \\
!) & !\langle M\rangle\rangle & \mapsto! & M
\end{array}
$$

Reduction and Equational Theory

Definition (Reduction)

The relation $\rightarrow_{\lambda_{\text {SQL }}}$ is the union of the following binary relations over Com:

$$
\begin{array}{rrlll}
\left.\beta_{c}\right) & {[V] \star \lambda x \cdot M} & \mapsto_{\beta_{c}} & M\{V / x\} & \\
\sigma) & (L \star \lambda x \cdot M) \star \lambda y \cdot N & \mapsto_{\sigma} & L \star \lambda x \cdot(M \star \lambda y \cdot N) & \text { for } x \notin \mathrm{fv}(N) \\
\left.\uplus_{1}\right) & (M \uplus N) \star \lambda x \cdot P & \left.\mapsto_{\uplus}\right) & (M \star \lambda x \cdot P) \uplus(N \star \lambda x \cdot P) & \\
\left.\uplus_{r}\right) & M \star \lambda x \cdot(N \uplus P) & \mapsto_{\uplus} & (M \star \lambda x \cdot N) \uplus(M \star \lambda x \cdot P) & \\
\left.\emptyset_{1}\right) & \emptyset \star \lambda x \cdot M & \mapsto_{\emptyset_{1}} & \emptyset & \\
\left.\emptyset_{2}\right) & M \star \lambda x \cdot \emptyset & \mapsto_{\emptyset_{2}} & \emptyset & \\
!) & !\langle M\rangle & \mapsto_{!} & M &
\end{array}
$$

The reduction $\rightarrow_{\lambda_{\text {SQL }}}$ is the contextual closure of $\lambda_{\text {SQL }}$ under computational contexts, where such contexts are mutually defined with value contexts as follows:

$$
\begin{aligned}
& \mathrm{V}::=\langle\cdot \text { Vall }\rangle \lambda x . \mathrm{C} \mid\langle\langle\mathrm{C}\rangle \\
& \mathrm{C}::=\langle\cdot \mathrm{Com}\rangle|[\mathrm{V}]| \mathrm{C} \star \mathrm{~V}|M \star \mathrm{~V}| \mathrm{C} \uplus M|M \uplus \mathrm{C}|!\mathrm{V}
\end{aligned}
$$

We equip the calculus with an equational theory for multisets, taken from [Ricciotti and Cheney, 22].

Definition (Equational theory) Be E an equational theory defined, as follows, plus associativity:

$$
\text { Comm) } M \uplus N=N \uplus M \quad \text { Empty) } \emptyset \uplus \emptyset=\emptyset
$$

Note: $\emptyset \uplus M \neq M$

Modularizing Confluence - Getting rid of the equational theory

Definition
Given a reduction relation \rightarrow and an equational theory $=_{E}$, we say that \rightarrow commutes over $=_{E}$ if for all M, N, L such that $M={ }_{E} N \rightarrow L$, there exists P such that $M \rightarrow P={ }_{E} L$.

Lemma (Hindley-Rosen)

Let \mathcal{R}_{1} and \mathcal{R}_{2} be relations on the set A. If \mathcal{R}_{1} and \mathcal{R}_{2} are confluent and commute with each other, then $\mathcal{R}_{1} \cup \mathcal{R}_{2}$ is confluent.

We will exploit that to focus just on the reduction relation while proving confluence.

Hence, by since $=E$ commutes with \rightarrow, one needs just the confluence of \rightarrow to assert the confluence of \rightarrow modulo E.

Decreasing diagram

Definition (Decreasing, van Oostrom)

An rewriting relation \mathcal{R} is locally decreasing if there exist a presentation $\left(R,\left\{\rightarrow_{i}\right\}_{i \in I}\right)$ of \mathcal{R} and a well-founded strict order $>$ on I such that:
where $\vee \bar{I}=\{i \in I \mid \exists k \in \bar{I} . k>i\}$.

Decreasing diagram

Definition (Decreasing, van Oostrom)

An rewriting relation \mathcal{R} is locally decreasing if there exist a presentation $\left(R,\left\{\rightarrow_{i}\right\}_{i \in I}\right)$ of \mathcal{R} and a well-founded strict order $>$ on / such that:
where $\vee \bar{I}=\{i \in I \mid \exists k \in \bar{I} . k>i\}$.
Theorem (van Oostrom)
Every locally decreasing rewriting relation \mathcal{R} is confluent.

Which order?

Considers diagrams involving rules of \uplus_{1} or \uplus_{r} vs. \emptyset_{1} and \emptyset_{2}, it is easy to perceive how these rules should be ordered as labels of a potential labellings. Consider, for instance, the following diagram:

$$
\left(M_{1} \uplus M_{2}\right) \star \lambda x . \emptyset \underset{\uplus_{1}}{\longrightarrow}\left(M_{1} \star \lambda x . \emptyset\right) \uplus\left(M_{2} \star \lambda x . \emptyset\right)
$$

In fact, the rules concerning the empty table, \emptyset_{1} and \emptyset_{2}, can be bottom elements of the order over labels we are searching for.

Which order? $\uplus_{/}$vs. σ

When it comes to comparing \uplus ノ vs. σ, the situation is a bit trickier because \uplus, only quasi-commutes over σ. The following diagrams shows that $\uplus_{ノ}$ must be made greater than σ.

$$
\left(\left(L_{1} \uplus L_{2}\right) \star \lambda x \cdot M\right) \star \lambda y \cdot N \longrightarrow \begin{gathered}
\longrightarrow \\
\uplus_{1} \mid \\
\left.\bar{M}_{1} \ldots \ldots L_{2}\right) \star \lambda x \cdot(M \star \lambda y \cdot N) \\
\vdots \\
\vdots
\end{gathered}
$$

where $\left.\bar{M}_{1}=\left(\left(L_{1} \star \lambda x \cdot M\right) \uplus\left(L_{2} \star \lambda x \cdot M\right)\right) \star \lambda y \cdot N\right)$,
$\bar{M}_{2}=\left(L_{1} \star \lambda x .(M \star \lambda y \cdot N)\right) \uplus\left(L_{2} \star \lambda x .(M \star \lambda y \cdot N)\right)$.

Which order?: β_{c} vs. \uplus_{r}

The case for β_{c} vs \uplus_{r} shows the need for a non-trivial approach, since depending in which context the rules are applied, we need either $\beta_{c}>\uplus_{r}$ or $\beta_{c}<\uplus_{r}$.

... but ...

$$
\left[V_{1}\right] \star \lambda z \cdot([z] \star z) \xrightarrow{\uplus_{r}}\left[V_{2}\right] \star \lambda z \cdot([z] \star z)
$$

$V_{1}=\lambda x \cdot\left(M \star \lambda y \cdot\left(N_{1} \uplus N_{2}\right)\right)$
$V_{2}=\lambda x \cdot\left(\left(M \star \lambda y \cdot N_{1}\right) \uplus\left(M \star \lambda y \cdot N_{2}\right)\right)$

(σ vs. \uplus_{r})

$$
\begin{aligned}
& \left(M \star \lambda x \cdot\left(N_{1} \uplus N_{2}\right)\right) \star \lambda y \cdot L \longrightarrow M \star \lambda x \cdot\left(\left(N_{1} \uplus N_{2}\right) \star \lambda y \cdot L\right) \\
& \uplus_{r} \mid \\
& \begin{array}{l:l}
\uplus_{1} & \vdots \\
\vdots
\end{array} \\
& \left(\left(M \star \lambda x \cdot N_{1}\right) \uplus\left(M \star \lambda x \cdot N_{2}\right)\right) \star \lambda y . L \\
& M \star \lambda x \cdot\left(\left(N_{1} \star \lambda y \cdot L\right) \uplus\left(N_{2} \star \lambda y \cdot L\right)\right) \\
& \begin{array}{ccc}
\uplus_{l} \\
\left(\left(M \star \lambda x \cdot N_{1}\right) \star \lambda y \cdot L\right) & \uplus\left(\left(M \star \lambda x \cdot N_{2}\right) \star \lambda y \cdot L\right) \stackrel{\uplus_{r}}{\square}\left(M \star \lambda x \cdot\left(N_{1} \star \lambda y \cdot L\right)\right) \\
\uplus\left(M \star \lambda x \cdot\left(N_{2} \star \lambda y \cdot L\right)\right)
\end{array}
\end{aligned}
$$

Multi-reduction

The confluence proof we are going to sketch avoids the issue with β_{c} vs. \uplus_{r} reported above by considering multiple reductions.

A parallel rewrite step is a sequence of reductions at a set P of parallel positions, ensuring that the result does not depend upon a particular sequentialization of P.
Given a reduction step γ we define its parallel version as $\operatorname{Par} \gamma$.

Generalized version of \uplus_{l} and \uplus_{r}

The case for \uplus_{l} vs. \uplus_{r} can seem innocent, for example:

where
$\bar{M} \equiv\left(M_{1} \star \lambda x . N_{1}\right) \uplus\left(M_{2} \star \lambda x . N_{1}\right) \uplus\left(M_{1} \star \lambda x . N_{2}\right) \uplus\left(M_{2} \star \lambda x . N_{2}\right)$
and
$\overline{\bar{M}} \equiv\left(M_{1} \star \lambda x \cdot N_{1}\right) \uplus\left(M_{1} \star \lambda x \cdot N_{2}\right) \uplus\left(M_{2} \star \lambda x \cdot N_{1}\right) \uplus\left(M_{2} \star \lambda x \cdot N_{2}\right)$

Generalized version of \uplus_{l} and \uplus_{r}

$\bar{M}^{\prime}{ }_{1} \equiv\left(M_{1} \star \lambda x \cdot\left(N_{1} \uplus N_{2}\right)\right) \uplus\left(M_{2} \star \lambda x .\left(N_{1} \uplus N_{2}\right)\right) \uplus\left(M_{3} \star \lambda x .\left(N_{1} \uplus N_{2}\right)\right)$ and
$\bar{M}^{\prime}{ }_{2} \equiv\left(\left(M_{1} \uplus M_{2} \uplus M_{3}\right) \star \lambda x . N_{1}\right) \uplus\left(\left(M_{1} \uplus M_{2} \uplus M_{3}\right) \star \lambda x . N_{2}\right)$

Definition (Generalized union step)

Let us define as generalized \uplus_{I} and \uplus_{r} steps as follows

$$
\begin{array}{lll}
\text { Gen } \left.\uplus_{1}\right) & \left(\ldots\left(M_{1} \uplus M_{2}\right) \uplus \ldots \uplus M_{n}\right) \star \lambda x . N & \mapsto \text { Gen } \uplus_{1} \\
& (M \star \lambda x \cdot N) \uplus\left(M_{2} \star \lambda x \cdot N\right) \uplus \ldots \uplus\left(M_{n} \star \lambda x \cdot N\right) & \\
& & \\
\text { Gen } \left.\uplus_{r}\right) & M \star \lambda x .\left(\ldots\left(N_{1} \uplus N_{2}\right) \uplus \ldots \uplus N_{n}\right) & \mapsto \text { Gen } \uplus_{r} \\
& \left(M \star \lambda x . N_{1}\right) \uplus\left(M \star \lambda x . N_{2}\right) \uplus \ldots \uplus\left(M \star \lambda x . N_{n}\right) &
\end{array}
$$

Route to Confluence

We are now ready to state our main result:
Theorem (Confluence)
$\lambda_{S Q L}$ is confluent.

1. All reduction rules strongly commute with !.
2. Under the following order for parallel rewriting steps, all remaining rules are decreasing:
$\operatorname{Par} \beta_{c}>\operatorname{Par} \sigma>\operatorname{ParGen} \uplus_{r}>\operatorname{ParGen} \uplus_{1}>\emptyset_{1}>\emptyset_{2}$
The diagrams for the cases $\operatorname{Par} \uplus_{l}$ vs $\operatorname{Par} \uplus_{r}$ and $\operatorname{Par} \uplus_{r}$ vs \emptyset_{1} only hold up to E.
E.g., $\emptyset_{\emptyset_{1}} \leftarrow \emptyset \star \lambda x . M \uplus N \rightarrow_{\uplus_{r}} \rightarrow_{\emptyset_{1}}^{2} \emptyset \uplus \emptyset$.
3. Confluence is obtained combining the previous points.

Consequences

By confluence, $\lambda_{\text {SQL }}$ normal forms (if exist) are unique.

Moreover, it is possible to characterize normal forms and provide a translation from $\lambda_{\text {SQL }}$ to $N R C$.

Since $\lambda_{\text {SQL }}$ normal forms (up to E) are translated in NRC normal forms, they are queries, as expected.

Conclusion

Considerations:

Lambda SQL is not just a computational calculus, but has also a co-computational flavour: it is a case study to understand how merge computational effects with co-computational one, also at a semantic level.

The union operator behaves like a delimited control operator that duplicate resources:
this has led some intricacies that made difficult to find a proper label.

Future work:

Unified way as done in [Felgenhauer and van Oostrom, 13]. Merging this method with [FGdLT22].

