
Confluence of a Computational Lambda
Calculus for Higher-Order Relational Queries

Claudio Sacerdoti Coen Riccardo Treglia
IWC 23 - Obergurgl, 23/08/2023

Università di Bologna

Contents

1. Starting Point and Theoretical Introduction

2. Syntax and Reduction

3. Decreasing Diagrams and Labelling Speculation

4. Proof of Confluence

2/19

Introduction

Our Starting Point
[W. Ricciotti, J. Cheney - Strongly Normalizing Higher-Order Relational Queries]

The Nested Relational Calculus (NRC) provides a principled
foundation for integrating database queries into PL.
It is easy to implement a terminating rewriting algorithm for
normalizing NRC queries to flat relational queries, which can
be translated to idiomatic SQL queries.

Our ongoing work

A monadic calculus mirroring NRC
Define a reduction theory and prove it confluent
Non-idempotent intersection type assignment system

3/19

Computational Monads

A monad over a category of domains D is a triple (T , [·], ⋆)

Objects

D is the type of a value;
TD is the type of computations (possibly with effects) over D.

Operators

[·] : D −→ TD (Haskell: return);
⋆ : TD −→ (D −→ TD) −→ TD (Haskell: >>=).

4/19

Computational Monads

A monad over a category of domains D is a triple (T , [·], ⋆)

Objects

D is the type of a value;
TD is the type of computations (possibly with effects) over D.

Operators

[·] : D −→ TD (Haskell: return);
⋆ : TD −→ (D −→ TD) −→ TD (Haskell: >>=).

4/19

The monadic approach

The computational λ-calculus, was introduced as a metalanguage
to describe computational effects in programming languages.

5/19

The monadic approach

The computational λ-calculus, was introduced as a metalanguage
to describe computational effects in programming languages.

At a semantic level, it relies on the categorical notion of monad.

f : A −→ TB where T is a monad

5/19

The monadic approach

The computational λ-calculus, was introduced as a metalanguage
to describe computational effects in programming languages.

In my previous works (see e.g. IWC’20, IWC’21), the
computational core λ© was presented.

Computational core
≈

Plotkin’s call-by-value λ-calculus + monad operators

5/19

The monadic approach

The computational λ-calculus, was introduced as a metalanguage
to describe computational effects in programming languages.

In this works, the computational core λ© is extended with specific
operations to handle with tables, such as:

Join tables
Say: ’this is a table’ ... aka reflection
The inverse of reflection: reification

λSQL

≈
computational core + (list) monad operators + reify/reflect tables

5/19

SQL λ-calculus

Definition (Term syntax)
Val : V , W ::= x | λx .M

Com : M, N ::= [V] | M ⋆ V

6/19

SQL λ-calculus

Definition (Term syntax)
Val : V , W ::= x | λx .M | ⟨⟨M⟩⟩

Com : M, N ::= [V] | M ⋆ V | M ⊎M | ∅ | !V

6/19

Reduction and Equational Theory

Definition (Reduction)
The relation −→λSQL is the union of the following binary relations over
Com:

βc) [V] ⋆ λx .M 7→βc M{V /x}
σ) (L ⋆ λx .M) ⋆ λy .N 7→σ L ⋆ λx .(M ⋆ λy .N) for x ̸∈ fv(N)
⊎l) (M ⊎ N) ⋆ λx .P 7→⊎l (M ⋆ λx .P) ⊎ (N ⋆ λx .P)
⊎r) M ⋆ λx .(N ⊎ P) 7→⊎r (M ⋆ λx .N) ⊎ (M ⋆ λx .P)
∅1) ∅ ⋆ λx .M 7→∅1 ∅
∅2) M ⋆ λx .∅ 7→∅2 ∅

!) !⟨⟨M⟩⟩ 7→! M

7/19

Reduction and Equational Theory

Definition (Reduction)
The relation −→λSQL is the union of the following binary relations over Com:

βc) [V] ⋆ λx .M 7→βc M{V /x}

σ) (L ⋆ λx .M) ⋆ λy .N 7→σ L ⋆ λx .(M ⋆ λy .N) for x ̸∈ fv(N)
⊎l) (M ⊎ N) ⋆ λx .P 7→⊎l (M ⋆ λx .P) ⊎ (N ⋆ λx .P)
⊎r) M ⋆ λx .(N ⊎ P) 7→⊎r (M ⋆ λx .N) ⊎ (M ⋆ λx .P)
∅1) ∅ ⋆ λx .M 7→∅1 ∅

∅2) M ⋆ λx .∅ 7→∅2 ∅

!) !⟨⟨M⟩⟩ 7→! M

The reduction −→λSQL is the contextual closure of λSQL under
computational contexts, where such contexts are mutually defined with
value contexts as follows:

V ::= ⟨·Val⟩ | λx .C | ⟨⟨C⟩⟩
C ::= ⟨·Com⟩ | [V] | C ⋆ V | M ⋆ V | C ⊎M | M ⊎ C | !V

7/19

We equip the calculus with an equational theory for multisets,
taken from [Ricciotti and Cheney, 22].

Definition (Equational theory)
Be E an equational theory defined, as follows, plus associativity:

Comm) M ⊎ N = N ⊎M Empty) ∅ ⊎ ∅ = ∅

Note: ∅ ⊎M ̸= M

8/19

Modularizing Confluence - Getting rid of the equational theory

Definition
Given a reduction relation −→ and an equational theory =E , we say
that −→ commutes over =E if for all M, N, L such that
M =E N −→ L, there exists P such that M −→ P =E L.

Lemma (Hindley-Rosen)
Let R1 and R2 be relations on the set A. If R1 and R2 are
confluent and commute with each other, then R1 ∪R2 is
confluent.

We will exploit that to focus just on the reduction relation while
proving confluence.

Hence, by since =E commutes with −→, one needs just the
confluence of −→ to assert the confluence of −→ modulo E .

9/19

Decreasing diagram

Definition (Decreasing, van Oostrom)

An rewriting relation R is locally decreasing if there exist a
presentation (R, {−→i}i∈I) of R and a well-founded strict order >

on I such that:

←i ·→j ⊆ ∗←→∨i ·
=−→
j
· ∗←→

∨{ij}
· =←−

i
· ∗←→∨j ,

where ∨Ī = {i ∈ I | ∃k ∈ Ī. k > i}.

M
j

- N � ∗
∨j

- ·
=
j

- ·

P

i

?
� ∗
∨i

- ·
=
j

- · �
∗
∨{ij}

- M̄

∗ ∨{ij}
?

6

10/19

Decreasing diagram

Definition (Decreasing, van Oostrom)

An rewriting relation R is locally decreasing if there exist a
presentation (R, {−→i}i∈I) of R and a well-founded strict order >

on I such that:

←i ·→j ⊆ ∗←→∨i ·
=−→
j
· ∗←→

∨{ij}
· =←−

i
· ∗←→∨j ,

where ∨Ī = {i ∈ I | ∃k ∈ Ī. k > i}.

Theorem (van Oostrom)

Every locally decreasing rewriting relation R is confluent.

10/19

Which order?

Considers diagrams involving rules of ⊎l or ⊎r vs. ∅1 and ∅2, it is
easy to perceive how these rules should be ordered as labels of a
potential labellings. Consider, for instance, the following diagram:

(M1 ⊎M2) ⋆ λx .∅
⊎l
- (M1 ⋆ λx .∅) ⊎ (M2 ⋆ λx .∅)

∅
�

2
∅ 2

∅2

-
In fact, the rules concerning the empty table, ∅1 and ∅2, can be

bottom elements of the order over labels we are searching for.

11/19

Which order? ⊎l vs. σ

When it comes to comparing ⊎l vs. σ, the situation is a bit trickier
because ⊎l only quasi-commutes over σ. The following diagrams
shows that ⊎l must be made greater than σ.

((L1 ⊎ L2) ⋆ λx .M) ⋆ λy .N
σ

- (L1 ⊎ L2) ⋆ λx .(M ⋆ λy .N)

M̄1

⊎l

?

⊎l

- ·
2
σ

- M̄2

⊎l

?

where M̄1 = ((L1 ⋆ λx .M) ⊎ (L2 ⋆ λx .M)) ⋆ λy .N),
M̄2 = (L1 ⋆ λx .(M ⋆ λy .N)) ⊎ (L2 ⋆ λx .(M ⋆ λy .N)).

12/19

Which order?: βc vs. ⊎r

The case for βc vs ⊎r shows the need for a non-trivial approach,
since depending in which context the rules are applied, we need
either βc > ⊎r or βc < ⊎r .

[V] ⋆ λx .(N ⊎ P)
βc - (N ⊎ P){V /x}

([V] ⋆ λx .N) ⊎ ([V] ⋆ λx .P)

⊎r

?
βc

2
- N{V /x} ⊎ P{V /x}

wwwwwww

. . . but . . .

V1 = λx .(M ⋆ λy .(N1 ⊎ N2))
V2 = λx .((M ⋆ λy .N1) ⊎ (M ⋆ λy .N2))

[V1] ⋆ λz.([z] ⋆ z)
⊎r- [V2] ⋆ λz.([z] ⋆ z)

[V1] ⋆ V1

βc

? ⊎r

2
- [V2] ⋆ V2

βc

?

13/19

(σ vs. ⊎r)

(M ⋆ λx.(N1 ⊎ N2)) ⋆ λy.L
σ

- M ⋆ λx.((N1 ⊎ N2) ⋆ λy.L)

((M ⋆ λx.N1) ⊎ (M ⋆ λx.N2)) ⋆ λy.L

⊎r

?
M ⋆ λx.((N1 ⋆ λy.L) ⊎ (N2 ⋆ λy.L))

⊎l

?

((M ⋆ λx.N1) ⋆ λy.L) ⊎ ((M ⋆ λx.N2) ⋆ λy.L)

⊎l

? 2
σ
- (M ⋆ λx.(N1 ⋆ λy.L)) ⊎ (M ⋆ λx.(N2 ⋆ λy.L))

⊎r

?

14/19

Multi-reduction

The confluence proof we are going to sketch avoids the issue with
βc vs. ⊎r reported above by considering multiple reductions.

A parallel rewrite step is a sequence of reductions at a set P of
parallel positions, ensuring that the result does not depend upon a
particular sequentialization of P.
Given a reduction step γ we define its parallel version as Parγ.

15/19

Generalized version of ⊎l and ⊎r

The case for ⊎l vs. ⊎r can seem innocent, for example:

(M1 ⊎ M2) ⋆ λx.(N1 ⊎ N2)
⊎l
- (M1 ⋆ λx.(N1 ⊎ N2)) ⊎ (M2 ⋆ λx.(N1 ⊎ N2))

((M1 ⊎ M2) ⋆ λx.N1) ⊎ ((M1 ⊎ M2) ⋆ λx.N2)

⊎r

? 2
⊎l

- M̄ =E
¯̄M

⊎r 2
?

where
M̄ ≡ (M1 ⋆ λx .N1) ⊎ (M2 ⋆ λx .N1) ⊎ (M1 ⋆ λx .N2) ⊎ (M2 ⋆ λx .N2)
and
¯̄M ≡ (M1 ⋆ λx .N1)⊎ (M1 ⋆ λx .N2)⊎ (M2 ⋆ λx .N1)⊎ (M2 ⋆ λx .N2)

16/19

Generalized version of ⊎l and ⊎r

(M1 ⊎M2 ⊎M3) ⋆ λx .(N1 ⊎ N2)
⊎l

- M̄ ′1

M̄ ′2

⊎r

? 4
⊎l

- ·

⊎r 3

?

M̄ ′1 ≡ (M1⋆λx .(N1⊎N2))⊎(M2⋆λx .(N1⊎N2))⊎(M3⋆λx .(N1⊎N2))
and
M̄ ′2 ≡ ((M1 ⊎M2 ⊎M3) ⋆ λx .N1) ⊎ ((M1 ⊎M2 ⊎M3) ⋆ λx .N2)

16/19

Definition (Generalized union step)

Let us define as generalized ⊎l and ⊎r steps as follows

Gen⊎l) (. . . (M1 ⊎M2) ⊎ . . . ⊎Mn) ⋆ λx .N 7→Gen⊎l

(M ⋆ λx .N) ⊎ (M2 ⋆ λx .N) ⊎ . . . ⊎ (Mn ⋆ λx .N)

Gen⊎r) M ⋆ λx .(. . . (N1 ⊎ N2) ⊎ . . . ⊎ Nn) 7→Gen⊎r

(M ⋆ λx .N1) ⊎ (M ⋆ λx .N2) ⊎ . . . ⊎ (M ⋆ λx .Nn)

17/19

Route to Confluence

We are now ready to state our main result:

Theorem (Confluence)
λSQL is confluent.

1. All reduction rules strongly commute with !.

2. Under the following order for parallel rewriting steps, all
remaining rules are decreasing:
Parβc > Parσ > ParGen⊎r > ParGen⊎l > ∅1 > ∅2

The diagrams for the cases Par⊎l vs Par⊎r and Par⊎r vs ∅1 only
hold up to E .
E.g., ∅ ∅1← ∅ ⋆ λx .M ⊎ N −→⊎r−→2

∅1
∅ ⊎ ∅.

3. Confluence is obtained combining the previous points.

18/19

Consequences

By confluence, λSQL normal forms (if exist) are unique.

Moreover, it is possible to characterize normal forms and provide a
translation from λSQL to NRC .

Since λSQL normal forms (up to E) are translated in NRC normal
forms, they are queries, as expected.

19/19

Conclusion

Considerations:
Lambda SQL is not just a computational calculus, but has
also a co-computational flavour: it is a case study to
understand how merge computational effects with
co-computational one, also at a semantic level.

The union operator behaves like a delimited control operator
that duplicate resources:
this has led some intricacies that made difficult to find a
proper label.

Future work:
Unified way as done in [Felgenhauer and van Oostrom, 13].

Merging this method with [FGdLT22].

19/19

