System Description: Statistical Parsing of Informalized Mizar Formulas
Cezary Kaliszyk, Josef Urban, Jirí Vyskocil19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, IEEE Computer Society pp. 169 – 172, 2017.
Abstract
We describe a statistical system that learns parsing of ambiguous Mizar-like formulas from a large training corpus of aligned informal/formal formulas. We describe the methodology and the overall ideas, evaluate the performance of the system, and provide a public web interface for using the system.
BibTeX
@Article{ckjujv-synasc17, author = {Cezary Kaliszyk and Josef Urban and Ji\v{r}\'{\i} Vysko\v{c}il}, title = {System Description: Statistical Parsing of Informalized {M}izar Formulas}, editor = {Tudor Jebelean, Viorel Negru, Dana Petcu, Daniela Zaharie, Tetsuo Ida, Stephen M. Watt}, booktitle = {19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2017}, year = {2017}, publisher = {{IEEE} Computer Society}, pages = {169--172} }