NO
af/ONE-SORTED/689.trs
Input rules:
   [ b -> h(h(b,a),f(a)),
     h(h(a,c),b) -> b,
     c -> h(h(a,h(a,h(c,b))),f(f(h(h(a,h(h(f(a),c),f(c))),f(h(b,a)))))) ]
Sorts having no ground terms: 
Rules applicable to ground terms:
   [ b -> h(h(b,a),f(a)),
     h(h(a,c),b) -> b,
     c -> h(h(a,h(a,h(c,b))),f(f(h(h(a,h(h(f(a),c),f(c))),f(h(b,a)))))) ]
Constructor pattern: [h(?x_1,?x_2),a,f(?x_1)]
Defined pattern: [c,b]
Constructor subsystem:
   [ ]
Modified Constructor subsystem:
   [ ]
No orientable rules for c. Add rules, and retry...
failed to construct defining rules
Retry with a different D/C-partition.
Constructor pattern: [h(?x_1,?x_2),a,f(?x_1),c]
Defined pattern: [b]
Constructor subsystem:
   [ ]
Modified Constructor subsystem:
   [ ]
No orientable rules for b. Add rules, and retry...
failed to construct defining rules
Retry with a different D/C-partition.
Constructor pattern: [h(?x_1,?x_2),a,f(?x_1),c,b]
Defined pattern: []
Constructor subsystem:
   [ b -> h(h(b,a),f(a)),
     h(h(a,c),b) -> b,
     c -> h(h(a,h(a,h(c,b))),f(f(h(h(a,h(h(f(a),c),f(c))),f(h(b,a)))))) ]
Modified Constructor subsystem:
   [ b -> h(h(b,a),f(a)),
     h(h(a,c),b) -> b,
     c -> h(h(a,h(a,h(c,b))),f(f(h(h(a,h(h(f(a),c),f(c))),f(h(b,a)))))) ]
Find a quasi-ordering ...
order successfully found
Precedence:
 c : Mul,  b : Mul;
 f : Mul;
 a : Mul;
 h : Mul;
Rules:
   [ h(h(a,c),b) -> b ]
Check confluence of constructor subsystem...
Check Termination...
Terminating, WCR: CR
Conjectures:
   [ b = h(h(b,a),f(a)),
     c = h(h(a,h(a,h(c,b))),f(f(h(h(a,h(h(f(a),c),f(c))),f(h(b,a)))))) ]
STEP 0
ES:
   [ b = h(h(b,a),f(a)),
     c = h(h(a,h(a,h(c,b))),f(f(h(h(a,h(h(f(a),c),f(c))),f(h(b,a)))))) ]
HS:
   [ ]
ES0:
   [ b = h(h(b,a),f(a)),
     c = h(h(a,h(a,h(c,b))),f(f(h(h(a,h(h(f(a),c),f(c))),f(h(b,a)))))) ]
HS0:
   [ ]
ES1:
   [ b = h(h(b,a),f(a)),
     c = h(h(a,h(a,h(c,b))),f(f(h(h(a,h(h(f(a),c),f(c))),f(h(b,a)))))) ]
HS1:
   [ ]
No equation to expand
check Non-Ground-Confluence...
ground constructor terms for instantiation: {a,h(a,a),f(a)}
ground terms for instantiation: {a:o,h(a,a):o,f(a):o}
obtain 11 rules by 3 steps unfolding
obtain 100 candidates for checking non-joinability
check by TCAP-Approximation (success)
Witness for Non-Confluence: <h(h(a,c),h(h(b,a),f(a))) <- h(h(a,c),h(h(a,c),b)) -> h(h(b,a),f(a))>
: Success(not GCR)
(52 msec.)
0.06