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Abstract. We revisit AC completion for left-linear term rewrite systems
where AC unification is avoided and the normal rewrite relation can be
used in order to decide validity questions. To that end, we give a new
correctness proof for finite runs and establish a simulation result between
the two inference systems known from the literature. Furthermore, we
show how left-linear AC completion can be simulated by general AC
completion. In particular, this result allows us to switch from the former
to the latter at any point during a completion process. Finally, we present
experimental results for our implementation of left-linear AC completion
in the tool accompll.
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1 Introduction

Completion has been extensively studied since its introduction in the seminal
paper by Knuth and Bendix [10]. One of the main limitations of the original
formulation is its inability to deal with equations which cannot be oriented into
a terminating rule such as the commutativity axiom. This shortcoming can be
resolved by completion modulo an equational theory E . In the literature, there
are two different approaches of achieving this. The general approach [6,3] re-
quires E-unification and allows us to decide validity problems using the rewrite
relation →R/E which is defined as ↔∗

E · →R · ↔∗
E . For left-linear term rewrite

systems, however, there is Huet’s approach [5] which avoids E-unification and
allows us to decide validity problems with the normal rewrite relation→R and a
single check for E-equivalence of the computed normal forms. In their respective
books, Avenhaus [1] and Bachmair [3] present inference systems for left-linear
completion modulo an equational theory. In this paper, we revisit slightly mod-
ified versions (A and B) of these inference systems for finite runs. In addition to
a new correctness proof for A in the spirit of [4] which does not rely on proof
orderings (Section 3), we reduce correctness of B to the correctness of A by estab-
lishing a simulation result between finite runs in these systems (Section 4). For
⋆ Supported by JSPS KAKENHI Grant Number JP22K11900.
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the concrete equational theory of associative and commutative (AC) function
symbols, we also show the connection between the inference system A and gen-
eral AC completion by means of another simulation result (Section 5). Finally,
we present experimental results obtained from our implementation of A for AC
in the tool accompll which show that the avoidance of AC unification can result
in significant performance improvements over general AC completion (Sections 6
and 7).

2 Preliminaries

We assume familiarity with term rewriting and completion as described e.g. in
[2] but recall some central notions. We consider term rewriting systems (TRSs)
which operate on terms over a given signature F . Terms which do not contain
the same variable more than once are referred to as linear terms. We say that
a TRS is left-linear if ℓ is a linear term for every rule ℓ→ r ∈ R. A TRS R
is terminating if the associated rewrite relation →R is well-founded. In that
case, we write s →!

R t if t is a normal form of s. A TRS R is confluent if
different computation paths can always be joined, i.e., →∗

R · →∗
R ⊆ →∗

R · →∗
R .

An important sufficient criterion for confluence is the well-known critical pair
lemma which states that a terminating TRS is confluent if all non-trivial overlaps
between left-hand sides of rules (critical pairs) are joinable. Furthermore, there is
the notion of prime critical pairs [8] which further restricts the considered critical
peaks t →p

R s→ϵ
R u to the ones where all proper subterms of s|p are irreducible.

In particular, terminating TRSs whose prime critical pairs are joinable are also
confluent. The set of (prime) critical pairs is denoted by CP(R) (PCP(R)). We
define CP(R1,R2) as the set of all critical pairs stemming from local peaks of
the form t →p

R1
s→ϵ

R2
u and CP±(R1,R2) = CP(R1,R2)∪CP(R2,R1). A TRS

is complete if it is terminating and confluent. Hence, a complete presentation R
of an equational system (ES) E can be used to decide the validity problem for
E : s↔∗

E t if and only if s→!
R · →!

R t.
We now turn our attention to rewriting modulo AC function symbols. To that

end, we start by giving general definitions for abstract rewrite systems (ARSs).
Let A = ⟨A,→⟩ be an ARS and ∼ an equivalence relation on A. We write⇔ for
← ∪ → ∪ ∼, →/∼ for ∼ · → · ∼ and ↓∼ for →∗ · ∼ · →∗ . Given A, we denote
⟨A,→/∼⟩ by A/∼. The ARS A is terminating modulo ∼ if there are no infinite
rewrite sequences with →/∼ and Church–Rosser modulo ∼ if ⇔∗ ⊆ ↓∼. The
ARS A is complete modulo ∼ if it is terminating modulo ∼ and Church–Rosser
modulo ∼. While there is no distinction for termination modulo ∼ between A
and A/∼ (∼ · ∼ = ∼ by transitivity), it makes a considerable difference whether
we talk about the Church–Rosser modulo ∼ property and therefore completeness
modulo ∼ of A or A/∼. The following lemma is taken from [1, Lemma 4.1.12].
It establishes an important connection between the Church–Rosser modulo ∼
property of an ARS A and A/∼.
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Lemma 1. Let A = ⟨A,→⟩ and A′ = ⟨A,⇀⟩ be ARSs and ∼ an equivalence
relation on A such that → ⊆⇀ ⊆ →/∼. If A′ is Church–Rosser modulo ∼ then
A/∼ is Church–Rosser modulo ∼.

The definitions and results for ARSs carry over to TRSs by replacing the
equivalence relation ∼ by the equational theory ↔∗

B of an ES B. Most theoret-
ical results of this paper are not specific to AC but hold for an arbitrary base
theory B of which we only demand that Var(ℓ) = Var(r) for all ℓ ≈ r ∈ B. We
abbreviate↔∗

B by ∼B and the rewrite relation→R/B is defined as ∼B · →R · ∼B.
Furthermore, we write ↓∼R for the relation→∗

R · ∼B · →∗
R . Termination modulo B

is shown by B-compatible reduction orders >, i.e., > is well-founded, closed under
contexts and substitutions and∼B · > · ∼B ⊆ >. This paper deals with a comple-
tion procedure which produces TRSs R such that R (rather than R/B) is com-
plete modulo B. In particular, the completion procedure uses the joinability with
respect to ↓∼R of CP(R)∪CP±(R,B±) where B± denotes B∪{r ≈ ℓ | ℓ ≈ r ∈ B}
as a sufficient and necessary criterion for the Church–Rosser modulo B property
of a B-terminating TRS R. Note that this criterion works with standard critical
pairs and therefore does not need unification modulo B. However, the criterion
is not valid for non-left-linear TRSs as the following example shows.

Example 1. Consider the TRS R consisting of the single rule f(x, x) → x with
+ as an additional AC function symbol. There are no critical pairs in R and
betweenR and AC, so CP(R) = CP±(R,AC±) = ∅. Now consider the conversion
f(x + y, y + x) ∼AC f(x + y, x + y) →R x + y. According to the criterion, f(x +
y, y + x) ↓∼R x+ y should hold, but this is clearly not the case.

3 Avenhaus’ Inference System

The idea of completion modulo an equational theory B for left-linear systems
where the normal rewrite relation can be used to decide validity problems has
been put forward by Huet [5]. To the best of our knowledge, inference systems
for this approach are only presented in the books by Avenhaus [1] and Bachmair
[3]. This section presents a new correctness proof of a version of Avenhaus’
inference system for finite runs in the spirit of [4] which does not rely on proof
orderings. Correctness of Bachmair’s system is established by a simulation result
in Section 4.

3.1 Inference System

Definition 1. The inference system A is parameterized by a fixed B-compatible
reduction order > on terms. It transforms pairs consisting of an ES E and a
TRS R over the common signature F according to the following inference rules
where s ≈̇ t denotes either s ≈ t or t ≈ s:
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E ,R
E ∪ {s ≈ t},R

if s →R · →R t orient
E ⊎ {s ≈̇ t},R
E ,R∪ {s→ t}

if s > t

deduce
E ,R

E ,R∪ {t→ s}
if s →R · ↔B t delete

E ⊎ {s ≈ t},R
E ,R

if s ∼B t

simplify
E ⊎ {s ≈̇ t},R
E ∪ {u ≈ t},R

if s→R/B u collapse
E ,R⊎ {t→ s}
E ∪ {u ≈ s},R

if t→R u

compose
E ,R⊎ {s→ t}
E ,R∪ {s→ u}

if t→R/B u

A step in an inference system I from an ES E and a TRS R to an ES E ′ and
a TRS R′ is denoted by (E ,R) I (E ′,R′). The parentheses of the pairs are only
used when the expression is surrounded by text in order to increase readability.
In the following, PCP±(R,B±) denotes the restriction of CP±(R,B±) to prime
critical pairs but where irreducibility is always checked with respect to R, i.e.,
the critical peaks t →p

R s↔ϵ
B u and t′ ↔p

B s→ϵ
R u′ are both prime if all proper

subterms of s|p are irreducible with respect to R.

Definition 2. Let E be an ES. A finite sequence

E0,R0 ⊢A E1,R1 ⊢A · · · ⊢A En,Rn

with E0 = E and R0 = ∅ is a run for E. If En ̸= ∅, the run fails. The run is
fair if Rn is left-linear and the following inclusions hold:

PCP(Rn) ⊆ ↓∼Rn
∪

n⋃
i=0

↔Ei∪Ri
PCP±(Rn,B±) ⊆ ↓∼Rn

∪
n⋃

i=0

↔Ri

Intuitively, fair and non-failing runs yield a B-complete presentation Rn of
the initial set of equations E , i.e., ↔∗

E ∪B = ↔∗
Rn∪B ⊆ ↓∼Rn

. In particular, the
inference rules are designed to preserve the equational theory augmented by B.
The following example shows that deducing local cliffs ( →R · ↔B) as rules as
well as the restriction to →R in the collapse rule are crucial properties of the
inference system.

Example 2. Consider the ES E consisting of the single equation x+0 ≈ x where
+ is an AC function symbol. We clearly have 0+x↔∗

E ∪AC x, so an AC complete
system C representing E has to satisfy 0+x ↓∼C x. There is just one way to orient
the only equation in E , which results in the rule x + 0 → x. Since we want our
run to be fair, we add the rules stemming from the prime critical pairs between
x+ 0→ x and AC±:

0+ x→ x x+ (0+ y)→ x+ y x+ (y + 0)→ x+ y (x+ y) + 0→ x+ y

If collapsing with→R/AC is allowed, all these rules become trivial equations and
can therefore be deleted. Thus, the modified inference system allows for a fair
run which is not complete as 0 + x ↓∼R x does not hold for R = {x + 0 → x}.
Furthermore, if we add pairs of terms stemming from local cliffs as equations,
we get the same result by applications of simplify.
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The inference system presented in Definition 1 is almost the same as the one
presented by Avenhaus in [1]. However, since we only consider finite runs, the
encompassment condition for the collapse rule has been removed in the spirit
of [13]. The following example shows that this can lead to smaller B-complete
systems.

Example 3. Consider the ES E = {f(x + y) ≈ f(x) + f(y)} where + is an AC
symbol. The inference system presented in [1] produces the AC complete system

f(x+ y)→ f(x) + f(y) f(y + x)→ f(x) + f(y)

in which either of the rules could be collapsed if it was allowed to collapse with
the other rule. In [1] this is prevented by an encompassment condition which
essentially forbids to collapse at the root position with a rewrite rule whose left-
hand side is a variant of the left-hand side of the rule which should be collapsed.
However, this is possible with the system presented in this paper, so for an AC
complete representation just one of the two rules suffices.

3.2 Confluence Criterion

The confluence criterion used in the correctness proof of A is an extended version
of the one used in [4] which we dub peak-and-cliff decreasingness. In the following,
we assume that equivalence relations ∼ are defined as the reflexive and transitive
closure of a symmetric relation , so ∼ = ∗. Furthermore, we assume that
steps are labeled with labels from a set I, so let A = ⟨A, {→α}α∈I⟩ be an ARS
and ∼ = (

⋃
α∈I α)

∗ an equivalence relation on A.

Definition 3. The ARS A is peak-and-cliff decreasing if there is a well-founded
order > on I such that for all α, β ∈ I the inclusions

→α · →β ⊆
∗⇐===⇒

∨αβ
→α · β ⊆

∗⇐==⇒
∨α

· =←−
β

hold. Here <αβ denotes the set {γ ∈ I | α > γ or β > γ} and if J ⊆ I then →J

denotes
⋃

γ∈J →γ . We simplify <αα to <α.

Lemma 2. Every conversion modulo ∼ is either a valley modulo ∼ or contains
a local peak or cliff:

⇔∗ ⊆ ↓∼ ∪ ⇔∗ · ← · → · ⇔∗ ∪ ⇔∗ · · → · ⇔∗ ∪ ⇔∗ · ← · · ⇔∗

Proof. We define

↼⇀ = ⇔∗ · ← · → · ⇔∗ ∪⇔∗ · · → · ⇔∗ ∪⇔∗ · ← · · ⇔∗

in order to simplify the notation. Suppose a ⇔n b. We show a ↓∼ b or a ↼⇀ b
by induction on n. If n = 0 then a = b and therefore also a ↓∼ b. If n > 0 then
a ⇔ c ⇔n−1 b for some c. The induction hypothesis yields c ↓∼ b or c ↼⇀ b. In
the latter case we are already done because ⇔ ·↼⇀ ⊆↼⇀. In the former case, we
distinguish between three subcases: Either a → c, a ← c or a ∼ c. If a → c, we
immediately obtain a ↓∼ c. For the remaining two cases, note that there exists
a k such that c→k · ∼ · →∗ b. We continue with a case analysis on k:
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– k = 0: If a← c we have a← c ∼ c′ →∗ b for some c′. Now either c = c′ and
a ↓∼ b or c · ∼ c′ and therefore a ↼⇀ b. If a ∼ c we have a ↓∼ b because ∼
is transitive.

– k > 0: If a ← c then there exists a c′ such that a ← c → c′ ⇔∗ b and
therefore a ↼⇀ b. Finally, if a ∼ c then a ∼ c→ c′ ⇔∗ b for some c′. If a = c
then we obtain a ↓∼ b from the induction hypothesis as there is a conversion
between a and b of length n− 1. Otherwise, a ∼ · c and therefore a ↼⇀ b.

⊓⊔

The proof of the following theorem is based on a well-founded order on mul-
tisets. We denote the multiset extension of an order > by >mul. It is well-known
that the multiset extension of a well-founded order is also well-founded.

Theorem 1. If A is peak-and-cliff decreasing then A is Church–Rosser modulo
∼.

Proof. With every conversion C we associate a multiset MC consisting of labels
of its rewrite and equivalence relation steps. Since A is peak-and-cliff decreasing,
there is a well-founded order > on I which allows us to replace conversions C of
the forms →α · →β , →α · β and β · →α by conversions C ′ where MC >mul

MC′ . Hence, we prove that A is Church–Rosser modulo ∼, i.e., ⇔∗ ⊆ ↓∼, by
well-founded induction on >mul. Consider a conversion a⇔∗ b which we call C.
By Lemma 2 we either have a ↓∼ b (which includes the case that C is empty) or
one of the following cases holds:

a⇔∗ · ← · → · ⇔∗ b a⇔∗ · ← · · ⇔∗ b a⇔∗ · · → · ⇔∗ b

If a ↓∼ b we are immediately done. In the remaining cases, we have a local peak
or cliff with concrete labels α and β, so MC = Γ1 ⊎ {α, β} ⊎ Γ2. Since A is
peak-and-cliff decreasing, there is a conversion C ′ with MC′ = Γ1⊎Γ ⊎Γ3 where
{α, β} >mul Γ . Hence, MC >mul MC′ and we finish the proof by applying the
induction hypothesis. ⊓⊔

In the following, we connect the joinability of local peaks and cliffs to the
joinability of prime critical pairs which allows us to apply peak-and-cliff decreas-
ingness in the correctness proof of A.

Definition 4. Given a TRS R and terms s, t and u, we write t ▽s u if s→+
R t,

s →+
R u, and t ↓R u or t ↔PCP(R) u. We write t ▽∼

s u if s →+
R t, s ∼ u and

t ↓∼R u or t↔PCP±(R,B±) u. Furthermore, ▽∼
s = {(u, t) | t ▽∼

s u}.

Lemma 3. Let R be a left-linear TRS. The following two properties hold:

1. If t →R s→R u then t ▽2
s u.

2. If t →R s↔B u then t ▽s · ▽∼
s u.

Proof. We only prove (2) as the proof of (1) can be found in [4] (Lemma 2.16).
We state the following auxiliary statements:



Left-Linear Completion with AC Axioms 7

3. If t →p
R s↔ϵ

B u is a critical peak then t ▽s · ▽∼
s u.

4. If t↔p
B s→ϵ

R u is a critical peak then t ▽∼
s · ▽s u.

To that end, we only prove (3) as the other case is symmetrical. If all proper
subterms of s|p are in normal form with respect to →R, t ≈ u ∈ PCP(R,B±)
which establishes t ▽∼

s u. Since also t ▽s t, we obtain the desired result. Other-
wise, there are a position q > p and a term v such that s →q

R v and all proper
subterms of s|q are in normal form with respect to→R. Together with [5, Lemma
3.5] we obtain either v ↓∼R u or v ↔PCP±(R,B±) u. In both cases v ▽∼

s u holds.
A similar case analysis applies to the local peak t →p

R s →q
R v: By the Critical

Pair Lemma, either t ↓R v or t↔CP(R) v. In the latter case

v|p
q\p←−−
R

s|p
ϵ−−→
R

t|p

is an instance of a prime critical peak as q > p and all proper subterms of s|q
are in normal form with respect to→R. Closure of rewriting under contexts and
substitutions yields t↔PCP(R) v. Therefore, we have t ▽s v in both cases which
concludes the proof of auxiliary statement (3).

Finally, we return to the proof of statement (2). Let t →R s ↔B u. From
[5, Lemma 3.5] we obtain t ↓∼R u or t ↔CP±(R,B±) u. In the former case we are
done as t ▽s u ▽s u. For the latter case we further distinguish between the two
subcases t →CP(R,B±) u and u →CP(B±,R) t. Note that this list of subcases is
exhaustive due to the direction of the local cliff. If t →CP(R,B±) u, t ▽s · ▽∼

s u
follows from (3) and closure of rewriting under contexts and substitutions. If
u→CP(B±,R) t, u ▽∼

s · ▽s t and therefore t ▽s · ▽∼
s u follows from (4) as well as

closure of rewriting under contexts and substitutions. ⊓⊔

3.3 Correctness Proof

We show that every fair and non-failing finite run results in a B-complete presen-
tation. To this end, we first verify that inference steps in A preserve convertibility.
We abbreviate E ∪ R ∪ B to ERB and E ′ ∪R′ ∪ B to ERB′.

Lemma 4. If (E ,R) ⊢A (E ′,R′) then the following inclusions hold:

−−−→
ERB

⊆ =−−−−→
R′/B

· ( =−−−→
ER′ ∪

∗←→
B
) · =←−−−−

R′/B
−−−→
ERB′

⊆ ∗←−−→
ERB

Proof. By inspecting the inference rules of A we obtain the following inclusions:

deduce

E ∪ R ⊆ E ′ ∪R′ E ′ ∪R′ ⊆ E ∪R ∪←−
R
· −→

R
∪←→

B
· −→

R
∪←−

R
· ←→

B

orient

E ∪ R ⊆ E ′ ∪R′ ∪ (R′)−1 E ′ ∪R′ ⊆ E ∪ (E)−1 ∪R
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delete

E ∪ R ⊆ E ′ ∪R′ ∪ ∼B E ′ ∪R′ ⊆ E ∪R

compose

E ∪ R ⊆ E ′ ∪R′ ∪ −−→
R′
· ←−−−

R′/B
E ′ ∪R′ ⊆ E ∪R ∪−→

R
· −−−→

R/B

collapse

E ∪ R ⊆ E ′ ∪R′ ∪ −−→
R′
· −→

E′
E ′ ∪R′ ⊆ E ∪R ∪←−

R
· −→

R

simplify

E ∪ R ⊆ E ′ ∪R′ ∪ −−−→
R′/B

· −→
E′
∪ −→

E′
· ←−−−

R′/B

E ′ ∪R′ ⊆ E ∪R ∪←−−−
R/B

· −→
E
∪ −→

E
· −−−→

R/B

Then, inclusion (2) follows directly from the closure of rewrite relations under
contexts and substitutions. Statement (1) holds since it is a generalization that
all cases have in common. ⊓⊔

Corollary 1. If (E ,R) ⊢∗A (E ′,R′) then ∗←−−→
ERB

=
∗←−−−→

ERB′ .

Lemma 5. If (E ,R) ⊢∗A (E ′,R′) and R ⊆ > then R′ ⊆ >.

Proof. According to the assumption we have (E ,R) ⊢nA (E ′,R′) for some natural
number n. We proceed by induction on n. If n = 0, the statement is trivial
since R = R′. Let n > 0 and consider (E ,R) ⊢n−1

A (E ′′,R′′) ⊢A (E ′,R′). The
induction hypothesis yieldsR′′ ⊆ >. We continue with a case analysis on the rule
applied in the step (E ′′,R′′) ⊢A (E ′,R′). For the rules delete and simplify there
is nothing to show as the set of rewrite rules is not changed. If deduce is applied
to a local peak there is nothing to show. Otherwise we have R′ = R′′ ∪ {s→ t}
where s↔B · →R t. From the fact that > is B-compatible we obtain s > t and
therefore R′ ⊆ >. For orient we have R′ = R′′ ∪ {s→ t} with s > t, so R′ ⊆ >.
In the case of compose we have R′ = (R′′ \ {s→ t}) ∪ {s→ u} with t→R/B u.
Since > is an AC-compatible reduction order, t→R/B u implies t > u. From the
induction hypothesis we obtain s > t. Now R′ ⊆ > follows by the transitivity of
>. Finally, for collapse we have R′ ⊊ R′′ ⊆ > which establishes R′ ⊆ >. ⊓⊔

Definition 5. Let ↔ be a rewrite relation or equivalence relation, M a finite
multiset of terms and > a B-compatible reduction order. We write s

M←→ t if s↔ t
and there exist terms s′, t′ ∈M such that s′ ≳ s and t′ ≳ t for ≳ = > ∪ ∼B.

We follow the convention that if a conversion is labeled with M , all single
steps can be labeled with M .

Lemma 6. Let (E ,R) ⊢A (E ′,R′) and R′ ⊆ >.
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1. For any finite multiset M we have M←−−→
ERB

∗ ⊆ M←−−−→
ERB′

∗.
2. If s M−−→

R
t then s

M−−→
R′

= · N←−−−→
ERB′

∗ t with {s} >mul N .

Proof. For (1), it suffices to show that M−−−−→
ERB

⊆ M←−−−→
ERB′

∗. Let s
M−−−−→

ERB
t. By

definition, there exist terms s′, t′ ∈ M with s′ ≳ s and t′ ≳ t. According to
Lemma 4 there exist terms u and v such that

s
=−−−−→

R′/B
u (

=−−−−−→
E′∪R′ ∪

∗←→
B
) v

=←−−−−
R′/B

t

Since R′ ⊆ > we have s ≳ u and t ≳ v and therefore s′ ≳ u and t′ ≳ v.
Hence, every non-empty step can be labeled with M and we obtain s

M←−−−→
ERB′

∗ t

as desired.
For a proof of (2), let s→M

R t. By definition, there exists an s′ ∈M such that
s′ ≳ s. We proceed by case analysis on the rule applied in the inference step.
For deduce, orient, delete, and simplify there is nothing to show since R ⊆ R′.

Suppose the step is an application of compose. If the rule used in the step
s →M

R t is not altered, we are done. Otherwise, the step was performed with a
rule ℓ→ r ∈ R which is changed to ℓ→ r′ ∈ R′ with r →R′/B r′. There exist
a substitution σ and a position p such that s = s[ℓσ]p and t = s[rσ]p. The new
step is s →M

R′ t′ where t′ = s[r′σ]p. Since > is a B-compatible reduction order
we have s′ > t′ an therefore the label M is still valid. From t′ we can reach t
with

t′
{t}←→
B

∗ · {t}←−−
R′ ·

{t}←→
B

∗ t

From s > t we obtain {s} >mul {t} which means that the new conversion between
s and t is of the desired form.

Finally, suppose the step is an application of collapse. If the rule used in the
step s →M

R t is not altered, we are done immediately. Otherwise, the step was
performed with a rule ℓ→ r ∈ R which is changed to an equation ℓ′ ≈ r ∈ E ′
with ℓ→R′ ℓ′. There exist a substitution σ and a position p such that s = s[ℓσ]p
and t = s[rσ]p. The new step is s →M

R′ t′ where t′ = s[ℓ′σ]p. Since > is a B-
compatible reduction order we have s′ > t′ and therefore the label M is still
valid. From t′ we can reach t with t′ →N

E′ t where N = {t′, t}. From s > t′ and
s > t we obtain {s} >mul N which means that the new conversion between s
and t is of the desired form. ⊓⊔

Finally, we are able to prove the correctness result for A, i.e., all finite fair
and non-failing runs produce a B-complete TRS which represents the original
set of equations. In contrast to [1] and [3], the proof shows that it suffices to
consider prime critical pairs.

Theorem 2. Let E be an ES. For every fair and non-failing run

E0,R0 ⊢A E1,R1 ⊢A · · · ⊢A En,Rn

for E, the TRS Rn is a B-complete representation of E.
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Proof. Let > be the B-compatible reduction order used in the run. From fairness
we obtain En = ∅ as well as the fact thatRn is left-linear. Corollary 1 establishes
↔∗

E ∪B = ↔∗
Rn∪B and termination modulo B of Rn follows from Lemma 5. It

remains to prove that Rn is Church–Rosser modulo B which we do by showing
peak-and-cliff decreasingness. So consider a labeled local peak t →M1

Rn
s→M2

Rn
u.

Lemma 3(1) yields t ▽2
s u. Let v ▽s w appear in this sequence (so v = t or

w = u). By definition, v ↓Rn
w or v ↔PCP(Rn) w. Together with fairness,

the fact that ∼B is reflexive as well as closure of rewriting under contexts and
substitutions we obtain v ↓∼Rn

w or (v, w) ∈
⋃n

i=0↔Ei∪Ri . In both cases, it
is possible to label all steps between v and w with {v, w}. Since s > v and
s > w we have M1 >mul {v, w} and M2 >mul {v, w}. Repeated applications of
Lemma 6(1) therefore yield a conversion in Rn∪B between v and w where every
step is labeled with a multiset that is smaller than both M1 and M2. Hence, the
corresponding condition required by peak-and-cliff decreasingness is fulfilled.

Next consider a labeled local cliff t →M1

Rn
s ↔M2

B u. From Lemma 3(2) we
obtain a term v such that t ▽s v ▽∼

s u. As in the case for local peaks we obtain a
conversion between t and v where each step can be labeled with {t, v} <mul M1.
Together with fairness, v ▽∼

s u yields v ↓∼Rn
u or (v, u) ∈

⋃n
i=0↔Ri

. In the
former case there exists a k such that v →∗

Rn
· ∼B · →k

Rn
u. If k = 0 we can

label all steps with {v}. If k > 0 the conversion is of the form v →∗
Rn
· ∼B

· →k−1
Rn

w →Rn u. We can label the rightmost step with M2 and the remaining
steps with {v, w}. Note that s > v. Since > is a B-compatible reduction order
we also have s > w. Thus, M1 >mul {v, w} which establishes the corresponding
condition required by peak-and-cliff decreasingness for all k. In the remaining
case we have (v, u) ∈

⋃n
i=0↔Ri

, so there is some i ⩽ n such that v ↔Ri
u.

Actually, we know that u →M2

Ri
v since otherwise we would have both s > v

and v > s by the B-compatibility of >. Repeated applications of Lemma 6(1,2)
therefore yield a conversion between u and v of the form

u
M2−−−→
Rn

= · N←−−−→
Rn∪B

∗ v

where {u} >mul N . By definition, s′ ≳ u for some s′ ∈M1 and therefore M1 >mul

N , which means that the corresponding condition required by peak-and-cliff
decreasingness is fulfilled. Overall, it follows that Rn is peak-and-cliff decreasing
and therefore Church–Rosser modulo B. ⊓⊔

Note that the proofs of the previous theorem and Theorem 1 do not re-
quire multiset orders induced by quasi-orders but use multiset extensions of
proper B-compatible reduction orders which are easier to work with. This could
be achieved by defining peak-and-cliff decreasingness in such a way that well-
founded orders suffice for the abstract setting. However, the usage of multiset
orders based on B-compatible reduction orders as well as a notion of labeled
rewriting which allows us to label steps with B-equivalent terms are crucial in
order to establish peak-and-cliff decreasingness for TRSs.
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4 Bachmair’s Inference System

As already mentioned, the inference system proposed by Avenhaus [1] is es-
sentially the same as A. The only other inference system for B-completion for
left-linear TRSs is due to Bachmair [3]. We investigate a slightly modified ver-
sion of this inference system where arbitrary local peaks are deducible and the
encompassment condition from the collapse rule is removed as we only consider
finite runs and call the resulting system B. The original inference systems of
Avenhaus and Bachmair can be found in Appendix A.

The main difference between A and B is that in B one may only use the
standard rewrite relation →R for simplifying equations and composing rules.
This allows us to deduce local cliffs as equations. The goal of this section is to
establish correctness of B via a simulation by A.

Definition 6. The inference system B is the same as A but with rewriting in
compose and simplify restricted to →R and the following rule which replaces the
two deduction rules of A:

deduce
E ,R

E ∪ {s ≈ t},R
if s →R · →R∪B± t

Definition 7. Let E be an ES. A finite sequence

E0,R0 ⊢B E1,R1 ⊢B · · · ⊢B En,Rn

with E0 = E and R0 = ∅ is a run for E. If En ̸= ∅, the run fails. The run is
fair if Rn is left-linear and the following inclusion holds:

PCP(Rn) ∪ PCP±(Rn,B±) ⊆ ↓∼Rn
∪

n⋃
i=0

↔Ei

In contrast to Definition 2, the fairness condition is the same for all prime
critical pairs since the inference rule deduce of B never produces rewrite rules.

In the following, o
I denotes an application of the rule orient in an inference

system I. In order to prove that fair and non-failing runs in B can be simulated
in A, we start with the following technical lemma.

Lemma 7. If (E1,R1) ⊢B (E2,R2) and (E1,R1)
o ∗
B (E ′1,R′

1) then (E ′1,R′
1) ⊢=A

(E ′2,R′
2) where (E2,R2)

o ∗
B (E ′2,R′

2). In a picture:

E1,R1 E2,R2

E ′1,R′
1 E ′2,R′

2

⊢B

⊢=A

o
∗B

o
∗B
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Proof. Let > be a fixed B-compatible reduction order which is used in both
A and B. From (E1,R1)

o ∗
B (E ′1,R′

1) we obtain E ′1 ⊆ E1, R1 ⊆ R′
1 and E1 \ E ′1 ⊆

R′
1 ∪R′−1

1 . In order to simplify the formulation, we will refer to the sequence of
orient steps between a pair and its primed variant as the invariant. We proceed
by a case analysis on the rule applied in the inference step (E1,R1) ⊢B (E2,R2).

– In the case of deduce, we apply the same rule in A. For local peaks s →R1

· →R1 t we have E2 = E1∪{s ≈ t}, R2 = R1, E ′2 = E ′1∪{s ≈ t} and R′
2 = R′

1.
For local cliffs s →R1 · ↔B t we have E2 = E1 ∪ {s ≈ t}, R2 = R1 as well as
R′

2 = R′
1 ∪ {t→ s}, E ′2 = E ′1. In both cases, the invariant is preserved.

– Suppose the inference step in B orients an equation s ≈ t. If s ≈ t ∈ E ′1
we perform the same step in A which preserves the invariant. Otherwise
s ≈ t ∈ E ′1 \ E1 and hence v → w ∈ R′

1 where {v, w} = {s, t}. In this case,
an empty step in A preserves the invariant.

– If the inference step in B deletes an equation s ≈ t, it has to be in E ′1 which
enables us to perform the same step in A while preserving the invariant:
Suppose that s ≈ t ∈ E1 \ E ′1. Since the equation is deleted, we have s ∼B t.
Neither s > t nor t > s can hold as > is B-compatible and irreflexive.
Hence, the equation cannot be oriented which contradicts the assumption
(E1,R1)

o ∗
B (E ′1,R′

1).
– If the inference step in B is compose or collapse, the same step can be per-

formed in A while preserving the invariant as R1 ⊆ R′
1.

– Finally, suppose that the inference step in B simplifies an equation s ≈ t.
Since the orientation of equations does not matter in completion, we may
assume that the simplification transforms the equation to s′ ≈ t without loss
of generality. If s ≈ t ∈ E ′1, we perform the same step in A which preserves the
invariant. Otherwise, there is a rule v → w ∈ R′

1 such that {v, w} = {s, t}. If
v = s and w = t, we use collapse for the inference step in A which produces
the same equation s′ ≈ t ∈ E ′2 which means that the invariant is preserved.
If v = t and w = s, we use compose for the inference step in A in order to
obtain the rule t→ s′. From t > s and s > s′ we obtain t > s′ and therefore
the equation s′ ≈ t can be oriented into the rule t→ s′. Thus, the invariant
is preserved. ⊓⊔

For the proof of the simulation result, we need a slightly different form of the
previous lemma. Analogous to the notation for rewrite relations, the relation o !

I
denotes the exhaustive application of the inference rule orient.

Corollary 2. If (E1,R1) ⊢B (E2,R2) and (E1,R1)
o !
B (E ′1,R′

1) then (E ′1,R′
1) ⊢∗A

(E ′2,R′
2) where (E2,R2)

o !
B (E ′2,R′

2).

Proof. Let (E1,R1) ⊢B (E2,R2) and (E1,R1)
o !
B (E ′1,R′

1). Lemma 7 yields

(E ′1,R′
1) ⊢=A (E ′2,R′

2) and (E2,R2)
o ∗
B (E ′2,R′

2). It follows that the orientable

equations in E ′2 are also included in E2. Hence, we can compute (E ′2,R′
2)

o !
A
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(E ′3,R′
3), satisfying (E ′1,R′

1) ⊢∗A (E ′3,R′
3) and (E2,R2)

o !
B (E ′3,R′

3) as desired.
⊓⊔

Theorem 3. For every fair run (E ,∅) ⊢∗B (∅,R) there exists a fair run (E ,∅) ⊢∗A
(∅,R).
Proof. Assume (E0,R0) ⊢nB (En,Rn) where R0 = En = ∅. By n applications of
Corollary 2 we arrive at the following situation:

E0,R0

E ′0,R′
0E0,R0

E1,R1

E ′1,R′
1

· · ·

· · ·

En,Rn

E ′n,R′
n

B

o !
A

∗
A

B

∗
A

B

∗
A

o
!B

o
!B

o
!B

The following two statements hold:

1. For 0 ⩽ i ⩽ n, all orientable equations in Ei are in R′
i (possibly reversed)

and the other equations are in E ′i .
2. PCP±(R′

n,B±) is a set of orientable equations.

Statement (1) is immediate from the simulation relation o !
B and statement (2)

follows from B-compatibility of the used reduction order together with the fact
that every (prime) critical pair is connected by one Rn-step and one B-step.
Furthermore, En = ∅ implies E ′n = ∅ as well as Rn = R′

n. Hence, we obtain
fairness of the run in A by showing the following inclusions:

PCP(R′
n) ⊆ ↓∼R′

n
∪

n⋃
i=0

↔E′
i∪R′

i
PCP±(R′

n,B±) ⊆ ↓∼R′
n
∪

n⋃
i=0

↔R′
i

Let s ≈ t ∈ PCP(R′
n). By fairness of the run in B we obtain s ↓∼R′

n
t or s↔Ek

t
for some k ⩽ n. In the former case, we are immediately done. In the latter case
we obtain s↔E′

k∪R′
k
t from (1) as desired. Now, let s ≈ t ∈ PCP±(R′

n,B±). By
fairness of the run in B we obtain s ↓∼R′

n
t or s ↔Ek

t for some k ⩽ n. Again,
we are immediately done in the former case. In the latter case we have s↔R′

k
t

because of (1) and (2). Therefore, the run in A is fair. ⊓⊔
The previous theorem is an important simulation result which justifies the

emphasis on A in this paper. Moreover, together with Theorem 2 the correctness
of the inference system B is an easy consequence.

Corollary 3. Every fair and non-failing run for E in B produces a B-complete
presentation of E.

5 AC Completion

So far, the theoretical results have been generalized by using the equational the-
ory B as a placeholder. In practice, however, this paper is concerned with the
particular theory AC. The results of this section allow us to assess the effective-
ness of the inference system A in the setting of AC completion.
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5.1 Limitations of Left-Linear AC Completion

In addition to the restriction to left-linear rewrite rules, the following exam-
ple demonstrates another severe limitation of the inference system A previously
unmentioned in the literature.

Example 4. Consider the ES E consisting of the equations

and(0, 0) ≈ 0 and(1, 1) ≈ 1 and(0, 1) ≈ 0

where and is an AC function symbol. There is only one way to orient each
equation. Furthermore, there are no critical pairs between the resulting rewrite
rules. Hence, using the inference system A we arrive at the intermediate TRS

and(0, 0)→ 0 and(1, 1)→ 1 and(0, 1)→ 0

where the only possible next step is to deduce local cliffs. We will now show that
this has to be done infinitely many times. Note that an AC-complete presentation
R of E has to be able to rewrite any AC-equivalent term of a redex: Consider
the infinite family of terms

s0 = and(0, 1) s1 = and(and(0, x1), 1) s2 = and(and(and(0, x1), x2), 1) · · ·

as well as

t0 = 0 t1 = and(0, x1) t2 = and(and(0, x1), x2) · · ·

Clearly, sn ↔∗
E ∪AC tn for all n ∈ N and therefore also sn ↓∼R tn for all n ∈ N, but

this demands infinitely many rules in R: For each sn there is an AC-equivalent
term such that the constants 0 and 1 are next to each other which allows us
to rewrite it using the rule and(0, 1) → 0. However, with n also the amount of
variables between these constants increases which requires R to have infinitely
many rules since rewrite rules can only be applied before the representation
modulo AC is changed.

Note that there is nothing special about this example except the fact that it
contains at least one equation which can only be oriented such that the left-hand
side contains an AC function symbol where both arguments have “structure”,
i.e., both arguments represent more complicated terms than a variable. As a
consequence, the necessity of infinite rules applies to all equational systems which
have this property. Needless to say, this means that for a large class of equational
systems the corresponding AC-canonical presentation (in the left-linear sense)
is infinite if it exists. This observation is in stark contrast to the properties of
general AC completion as presented in the next section which can complete the
ES E from Example 4 into a finite AC-canonical TRS by simply orienting all
rules from left to right.
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5.2 General AC Completion

Inference systems for completion modulo an equational theory which are not
restricted to the left-linear case usually need more inference rules than the ones
already covered in this paper. For general AC completion, however, there exists
a particularly simple inference system which constitutes a special case of nor-
malized completion [12] and can be found in Sarah Winkler’s PhD thesis [16,
p. 109].

Definition 8. The inference system KBAC is the same as A for the fixed theory
AC but with a modified collapse rule which allows us to rewrite with →R/AC and
the following rule which replaces the two deduction rules of A:

deduce
E ,R

E ∪ {s ≈ t},R
if s →R · ∼AC · →R t

The purpose of this section is to show how A can be simulated by KBAC in
the case of B = AC. Since local cliffs cannot be deduced in KBAC, the simulation
has to work with a potentially smaller set of rewrite rules. Furthermore, during
a run, the variants of rules stemming from local cliffs may be in different states
with respect to inter-reduction (collapse and compose). Given an intermediate
TRS R of a run in A as well as an intermediate TRS R′ of a run in KBAC, the
invariant R ⊆ →+

R′/AC resolves both of the aforementioned problems. The main
motivation behind this invariant is the avoidance of compose and collapse in the
KBAC run.

Lemma 8. If (E1,R1) ⊢A (E2,R2) and R1 ⊆ →+
R′

1/AC
then there exists a TRS

R′
2 such that (E1,R′

1)
∗
KBAC

(E2,R′
2) and R2 ⊆ →+

R′
2/AC

.

Proof. Let > be a fixed AC-compatible reduction order which is used in both A
and KBAC. Suppose (E1,R1) ⊢A (E2,R2) and R1 ⊆ →+

R′
1/AC

. We proceed by a
case analysis on the rule applied in the inference step (E1,R1) ⊢A (E2,R2). The
only interesting cases are when deduce, simplify, compose, or collapse is applied.

– If deduce is applied, we further distinguish whether it was applied to a local
peak or cliff. In the case of a local cliff, we have E1 = E2 and R2 = R1 ∪
{ℓ → r} with ℓ →R1/AC r. From ℓ →R1/AC r and R1 ⊆ →+

R′
1/AC

we obtain

ℓ→+
R′

1/AC
r. Thus,R2 ⊆ →+

R′
1/AC

holds. As (E1,R′
1)

0
KBAC

(E2,R′
1) is trivial,

the claim follows. In the case of a local peak, we have R1 = R2 and E2 =
E1 ∪ {t ≈ u} with t →R1

s →R1
u. Since R1 ⊆ →+

R′
1/AC

holds, we have
t →∗

R′
1/AC

v →R′
1
· ∼AC s ∼AC · →R′

1
w →∗

R′
1/AC

u for some v and w. By
performing deduce and simplify steps

(E1,R′
1) KBAC

(E1 ∪ {v ≈ w},R′
1)

∗
KBAC

(E1 ∪ {t ≈ u},R′
1) = (E2,R′

1)

is obtained. As R1 = R2, the inclusion R2 ⊆ →+
R′

1/AC
is trivial. Hence, the

claim holds.
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– If simplify is applied, we have R1 = R2, E1 = E0 ∪ {s ≈ t}, and E2 =
E0 ∪ {s′ ≈ t′} with s →=

R1
s′ and t →=

R1
t′. By R1 ⊆ →+

R′
1/AC

we have
s →∗

R′
1/AC

s′ and t →∗
R′

1/AC
t′. Therefore, performing simplify, we obtain

(E1,R′
1)

∗
KBAC

(E2,R′
1). As R1 = R2, the inclusion R2 ⊆ →+

R′
1/AC

is trivial.

– If compose is applied, we can write E1 = E2, R1 = R0 ∪ {ℓ → r}, and
R2 = R0 ∪ {ℓ → r′} with r →R0/AC r′. We have (E1,R′

1)
0
KBAC

(E2,R′
1).

Since the inclusions R0 ⊆ R1 ⊆ →+
R′

1/AC
yield ℓ →+

R′
1/AC

r →+
R′

1/AC
r′, we

obtain R2 ⊆ →+
R′

1/AC
.

– If collapse is applied, we can write E2 = E1∪{ℓ′ ≈ r} and R1 = R2⊎{ℓ→ r}
with ℓ→R2

ℓ′. By R2 ⊆ R1 ⊆ →+
R′

1/AC
we have

ℓ′ →∗
R′

1/AC
t →R′

1
· ∼AC ℓ ∼AC · →R′

1
u→∗

R′
1/AC

r

for some t and u. Performing deduce and simplify, we obtain:

(E1,R′
1) KBAC

(E1 ∪ {t ≈ u},R′
1)

∗
KBAC

(E1 ∪ {ℓ′ ≈ r},R′
1) = (E2,R′

1)

By R2 ⊆ R1 ⊆ →+
R′

1/AC
the claim is concluded. ⊓⊔

Theorem 4. For every fair run (E ,∅) ⊢∗A (∅,R) there exists a run (E ,∅) ∗
KBAC

(∅,R′) such that R′/AC is an AC-complete presentation of E.

Proof. With a straightforward induction argument, we obtain the run (E ,∅) ∗
KBAC

(∅,R′) as well as R ⊆ →+
R′/AC (∗) from Lemma 8. Furthermore, AC termination

of R′ and ↔∗
E ∪AC = ↔∗

R′∪AC (∗∗) are easy consequences from the definition of
KBAC. AC-completeness ofR follows from fairness of the run in A and Theorem 2.
For the Church–Rosser modulo AC property of R′/AC, consider a conversion
s ↔∗

R′∪AC t. From (∗∗) we obtain s ↔∗
E ∪AC and therefore s →∗

R · ∼AC · →∗
R t

by the fact that R is an AC-complete presentation of E . Finally, (∗) yields
s →∗

R′/AC · ∼AC · →∗
R′/AC

t as desired. Thus, R′/AC is an AC-complete presen-
tation of E . ⊓⊔

In addition to the result of the previous theorem, the proof of Lemma 8
provides a procedure to construct a KBAC run which “corresponds” to a given
A run. In particular, this means that it is possible to switch from A to KBAC at
any point while performing AC completion. This is of practical relevance: Assume
that AC completion is started with A in order to avoid AC unification. If A gets
stuck due to simplified equations which are not orientable into a left-linear rule or
it seems to be the case that the procedure diverges due to the problem described
in Example 4, starting from scratch with KBAC is not necessary. We conclude
the section by illustrating the practical relevance of the simulation result with
an example.
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Example 5. Consider the ES E for abelian groups consisting of the equations

e · x ≈ x x− · x ≈ e

where · is an AC symbol. Note that the well-known completion run for non-
abelian group theory is also a run in A: Critical pairs with respect to the as-
sociativity axiom are deducible via local cliffs, non-left-linear intermediate rules
are allowed and all (intermediate) rules are orientable with e.g. AC-KBO. Hence,
we obtain the TRS R′ consisting of the rules

1: e · x→ x 6: x · e→ x

2: x− · x→ e 7: x · x− → e

3: x−− → x 8: e− → e

4: x− · (x · y)→ y 9: x · (x− · y)→ y

5: (x · y)− → y− · x−

and switch to KBAC where we can collapse the redundant rules 4, 6, 7 and 9. A
final joinability check of all AC critical pairs reveals that the resulting TRS R
is an AC-complete presentation of abelian groups. Hence, the simulation result
allows to make progress with A even when it is doomed to fail. In particular,
critical pairs between rules whose left-hand sides do not contain AC symbols do
not need to be recomputed.

6 Implementation

To the best of our knowledge, our tool accompll is the first implementation of
left-linear AC completion. It is written in Haskell and available on its web-
site.4 Instead of expecting explicit AC-compatible reduction orders as input,
accompll performs completion with termination tools [15]. In principle, com-
pletion with termination tools has to consider all combinations of possible ori-
entations of equations in order to find a complete system. However, travers-
ing the whole search space is rather inefficient. The state of the art for solv-
ing this problem efficiently is multi-completion with termination tools due to
Winkler et al. [20]. Since the implementation of this method is a major effort,
accompll adopts a simple but incomplete strategy presented in [14]: Instead of
traversing the whole search space, accompll runs two threads in parallel where
one thread prefers to orient equations from left to right and vice versa. If one of
the threads finishes successfully, the corresponding result is reported. Comple-
tion fails if both threads fail.

As input, the tool expects a file in the WST5 format describing the equational
theory on which left-linear AC completion should be performed. The user can

4 https://github.com/niedjoh/accompll
5 https://www.lri.fr/~marche/tpdb/format.html

https://github.com/niedjoh/accompll
https://www.lri.fr/~marche/tpdb/format.html
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choose whether →R or →R/AC is used for rewriting in the inference rules sim-
plify and compose. Furthermore, the generation of critical pairs can be restricted
to the primality criterion.

Another feature is the validity problem solving mode which solves a given
instance of the validity problem for an equational theory E upon successful com-
pletion of E . This mode can be triggered by supplying a concrete equation s ≈ t
as a command line argument in addition to the file describing E .

In the tool accompll, external termination tools do much of the heavy lifting.
In particular, the user can supply the executable of an arbitrary termination tool
as long as the output starts with YES, MAYBE, NO or TIMEOUT (all other cases are
treated as an error). The input format for the termination tool can be set by a
command line argument. The available options are the WST format as well as
the XML format of the Nagoya Termination Tool [21].6

Since starting a new process for every call of the termination tool causes a
lot of operating system overhead, the tool supports an interactive mode which
allows it to communicate with a single process of the termination tool in a
dialogue style. Here, the only constraint for the termination tool is that it accepts
a sequence of termination problems separated by the keyword (RUN). This is
currently only implemented in an experimental version of Tyrolean Termination
Tool 2 (TTT2) [11], but we hope that more termination tools will follow as this
approach has a positive effect on the runtime of completion with termination
tools while demanding comparatively little implementation effort.

7 Experimental Results

The problem set used for the experimental results consists of 50 ESs. It is based
on the one used in [18] and has been extended by further examples from the
literature as well as handcrafted examples. The experiments were performed on
an Intel Core i7-7500U running at a clock rate of 2.7 GHz with 15.5 GiB of main
memory. Our tool accompll was used with the termination tool TTT2 as well as an
experimental version (denoted by TTT2e) which allows our tool to communicate
a sequence of termination problems without having to start a new process all
the time, as described in the preceding section.

Table 1 shows some interesting results and compares the two configura-
tions of accompll with the normalized completion [12] mode of mkbTT [19]
and the AC completion mode of MædMax [17]. The tool mkbTT is the origi-
nal implementation of multi-completion with termination tools [20]. MædMax,
on the other hand, implements maximal completion [9] which makes use of
MaxSAT/MaxSMT solvers instead of termination tools in order to avoid us-
ing concrete reduction orders as input. To the best of our knowledge, there is no
comparable completion tool which supports AC axioms. Since normalized com-
pletion subsumes general AC completion, a comparison with the aforementioned
modes of both systems allows us to assess the effectiveness of accompll with re-

6 https://www.trs.cm.is.nagoya-u.ac.jp/NaTT/natt-xml.html
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Table 1. Experimental results on 50 problems (excerpt)

accompll (TTT2) accompll (TTT2e) MædMax mkbTT
(1) (2) (1) (2) (1) (2) (1) (2)

N (+,×) 0.85 10 0.28 10 18.78 5 ∞
N (+,−,×,÷) 1.74 15 0.42 15 ∞ 60.06 ?7

[1, Ex. 4.2.15(b)] 0.48 4 0.24 4 0.01 3 0.19 2
abelian groups ⊥ ⊥ 0.16 5 0.14 0
[7, Ex. 2] ∞ ∞ 0.04 5 0.44 3

problems solved 16 16 22 35

spect to the state of the art in AC completion. Note that normalized completion
uses AC unification.

In Table 1, columns (1) show the execution time in seconds where ∞ de-
notes that the timeout of 60 seconds has been reached and ⊥ denotes failure of
completion. Columns (2) state the number of rules of the completed TRS. The
first two problems show that the avoidance of AC unification can indeed have a
positive effect on the execution time. However, the third problem indicates that
there may also be an opposite effect on small problems. The last two problems
show the two main limitations of left-linear AC completion: Abelian groups do
not have an AC-complete presentation which is left-linear and Example 2 from
[7] is a ground ES which causes left-linear AC completion to suffer from the
problem described in Example 4 by definition. The severity of these limitations
is reflected in the total number of solved problems. In particular, the problem
set does not contain an ES which is completed only by accompll. However, given
Theorem 4, this is not unexpected. Another noteworthy but unsurprising fact
is that complete systems produced by accompll tend to have more rules since
every rule needs different versions of left-hand sides to facilitate rewriting with-
out AC-matching. It would also be interesting to compare the execution times
for typical queries of the form E ⊨ s ≈ t as the resulting systems of left-linear
AC completion allow for more efficient joinability checks using →R instead of
→R/AC. We leave this for future work.

The complete results are available on the tool’s website.8 We conclude with
some additional notes on the results.

– The results are not cluttered with detailed results for the available options
regarding prime critical pairs and the concrete rewrite relation used for sim-
plify and compose since they did not lead to significant runtime differences.
Instead, the default options (no prime critical pairs and the rewrite relation
→R) were used for the experiments.

7 mkbTT does not output the completed system for unknown reasons.
8 http://cl-informatik.uibk.ac.at/software/accompll/
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– The second problem in Table 1 shows the merits of using termination tools
as it includes round-up division which cannot be handled by simplification
orders.

– Due to the incompleteness of the used approach for completion with termi-
nation tools, some equations in the problems A95_ex4_2_4a.trs as well as
sp.trs had to be reversed in order to get appropriate results. Note that this
does not distort the experimental results for left-linear AC completion in
general as the problem lies in the particular implementation of completion
with termination tools.

8 Conclusion

In this paper, we consolidated the existing literature for left-linear AC comple-
tion in the case of finite runs and gave new insight into its merits compared to
general AC completion. Furthermore, our implementation accompll allowed us to
run practical experiments. We conclude by giving some pointers for future work.
First of all, the merits of our novel simulation result for general AC completion
could be evaluated experimentally by providing an implementation. Another in-
teresting research direction is normalized completion for the left-linear case. If
successful, this would facilitate the treatment of important cases such as abelian
groups despite the restriction to left-linear TRSs. Furthermore, a formalization
of the established theoretical results is desirable. To that end, the existing Is-
abelle/HOL formalization from [4] is a perfect starting point as some results of
this paper are extensions of the results for standard rewriting presented there.

Acknowledgments. We thank Jonas Schöpf and Fabian Mitterwallner for pro-
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their valuable suggestions.
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A Original Inference Systems

For the reader’s convenience, we explicitly state in which way the inference
systems A and B differ from their original counterparts. As a preliminary step.
we have to define the notion of encompassment.

Definition 9. A term s encompasses a term t, denoted by s ·⊵ t, if there exist
a context C and substitution σ such that s = C[tσ]. Two terms s and t are
literally similar, denoted by s

.
= t, if there exists a variable renaming σ such that

sσ = t.The strict encompassment relation is defined as ·▷ = ·⊵ \ .
=.

Definition 10. The original inference system of Avenhaus [1] is the same as
A but with the following modified collapse rule:

collapse
E ,R∪ {t→ s}
E ∪ {u ≈ s},R

if t→R u with ℓ→ r ∈ R and t ·▷ l

Definition 11. The original inference system of Bachmair [3] is the same as
B but with the following modified deduction and collapse rules:

deduce
E ,R

E ∪ {s ≈ t},R
if s ≈ t ∈ CP(R∪ B±)

collapse
E ,R∪ {t→ s}
E ∪ {u ≈ s},R

if t→R u with ℓ→ r ∈ R and t ·▷ l
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