eq#( s( x ) , s( y ) ) | → | eq#( x , y ) |
le#( s( x ) , s( y ) ) | → | le#( x , y ) |
app#( add( n , x ) , y ) | → | app#( x , y ) |
min#( add( n , add( m , x ) ) ) | → | if_min#( le( n , m ) , add( n , add( m , x ) ) ) |
min#( add( n , add( m , x ) ) ) | → | le#( n , m ) |
if_min#( true , add( n , add( m , x ) ) ) | → | min#( add( n , x ) ) |
if_min#( false , add( n , add( m , x ) ) ) | → | min#( add( m , x ) ) |
rm#( n , add( m , x ) ) | → | if_rm#( eq( n , m ) , n , add( m , x ) ) |
rm#( n , add( m , x ) ) | → | eq#( n , m ) |
if_rm#( true , n , add( m , x ) ) | → | rm#( n , x ) |
if_rm#( false , n , add( m , x ) ) | → | rm#( n , x ) |
minsort#( add( n , x ) , y ) | → | if_minsort#( eq( n , min( add( n , x ) ) ) , add( n , x ) , y ) |
minsort#( add( n , x ) , y ) | → | eq#( n , min( add( n , x ) ) ) |
minsort#( add( n , x ) , y ) | → | min#( add( n , x ) ) |
if_minsort#( true , add( n , x ) , y ) | → | minsort#( app( rm( n , x ) , y ) , nil ) |
if_minsort#( true , add( n , x ) , y ) | → | app#( rm( n , x ) , y ) |
if_minsort#( true , add( n , x ) , y ) | → | rm#( n , x ) |
if_minsort#( false , add( n , x ) , y ) | → | minsort#( x , add( n , y ) ) |
The dependency pairs are split into 6 component(s).
if_minsort#( true , add( n , x ) , y ) | → | minsort#( app( rm( n , x ) , y ) , nil ) |
minsort#( add( n , x ) , y ) | → | if_minsort#( eq( n , min( add( n , x ) ) ) , add( n , x ) , y ) |
if_minsort#( false , add( n , x ) , y ) | → | minsort#( x , add( n , y ) ) |
Linear polynomial interpretation over the naturals
[if_minsort (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[rm (x1, x2) ] | = | x1 + x2 | |
[eq (x1, x2) ] | = | 0 | |
[0] | = | 3 | |
[nil] | = | 0 | |
[if_min (x1, x2) ] | = | x1 | |
[minsort# (x1, x2) ] | = | x1 + x2 | |
[minsort (x1, x2) ] | = | 2 x1 + 2 x2 | |
[true] | = | 0 | |
[if_minsort# (x1, x2, x3) ] | = | x1 + x2 | |
[false] | = | 0 | |
[if_rm (x1, x2, x3) ] | = | x1 + x2 | |
[app (x1, x2) ] | = | x1 + x2 | |
[add (x1, x2) ] | = | 2 x1 + x2 + 2 | |
[s (x1) ] | = | 2 x1 + 3 | |
[min (x1) ] | = | x1 | |
[le (x1, x2) ] | = | 3 x1 + 3 x2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
minsort#( add( n , x ) , y ) | → | if_minsort#( eq( n , min( add( n , x ) ) ) , add( n , x ) , y ) |
if_minsort#( false , add( n , x ) , y ) | → | minsort#( x , add( n , y ) ) |
Linear polynomial interpretation over the naturals
[if_minsort (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[rm (x1, x2) ] | = | x1 | |
[eq (x1, x2) ] | = | 0 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[if_min (x1, x2) ] | = | 2 x1 | |
[minsort# (x1, x2) ] | = | x1 + 2 | |
[minsort (x1, x2) ] | = | 2 x1 + 2 x2 | |
[true] | = | 0 | |
[if_minsort# (x1, x2, x3) ] | = | x1 + 1 | |
[false] | = | 0 | |
[if_rm (x1, x2, x3) ] | = | x1 | |
[app (x1, x2) ] | = | x1 + x2 | |
[add (x1, x2) ] | = | x1 + x2 + 1 | |
[s (x1) ] | = | 2 x1 | |
[min (x1) ] | = | 2 x1 | |
[le (x1, x2) ] | = | 3 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
if_minsort#( false , add( n , x ) , y ) | → | minsort#( x , add( n , y ) ) |
The dependency pairs are split into 0 component(s).
rm#( n , add( m , x ) ) | → | if_rm#( eq( n , m ) , n , add( m , x ) ) |
if_rm#( true , n , add( m , x ) ) | → | rm#( n , x ) |
if_rm#( false , n , add( m , x ) ) | → | rm#( n , x ) |
Linear polynomial interpretation over the naturals
[if_minsort (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[rm (x1, x2) ] | = | x1 + x2 | |
[eq (x1, x2) ] | = | 0 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[if_min (x1, x2) ] | = | 2 x1 + 1 | |
[minsort (x1, x2) ] | = | 2 x1 + 2 x2 | |
[true] | = | 0 | |
[false] | = | 0 | |
[if_rm (x1, x2, x3) ] | = | x1 + x2 | |
[app (x1, x2) ] | = | x1 + x2 + 1 | |
[add (x1, x2) ] | = | 2 x1 + x2 + 2 | |
[min (x1) ] | = | 2 x1 + 2 | |
[s (x1) ] | = | 0 | |
[le (x1, x2) ] | = | 0 | |
[if_rm# (x1, x2, x3) ] | = | x1 | |
[rm# (x1, x2) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
rm#( n , add( m , x ) ) | → | if_rm#( eq( n , m ) , n , add( m , x ) ) |
The dependency pairs are split into 0 component(s).
eq#( s( x ) , s( y ) ) | → | eq#( x , y ) |
Linear polynomial interpretation over the naturals
[if_minsort (x1, x2, x3) ] | = | x1 + x2 | |
[eq (x1, x2) ] | = | 2 x1 | |
[rm (x1, x2) ] | = | x1 | |
[0] | = | 2 | |
[eq# (x1, x2) ] | = | x1 | |
[nil] | = | 0 | |
[if_min (x1, x2) ] | = | 2 x1 + 1 | |
[minsort (x1, x2) ] | = | x1 + x2 | |
[true] | = | 3 | |
[false] | = | 0 | |
[if_rm (x1, x2, x3) ] | = | x1 | |
[app (x1, x2) ] | = | x1 + x2 | |
[add (x1, x2) ] | = | 2 x1 + x2 | |
[min (x1) ] | = | 2 x1 + 1 | |
[s (x1) ] | = | 2 x1 + 1 | |
[le (x1, x2) ] | = | 3 x1 + 2 x2 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
min#( add( n , add( m , x ) ) ) | → | if_min#( le( n , m ) , add( n , add( m , x ) ) ) |
if_min#( true , add( n , add( m , x ) ) ) | → | min#( add( n , x ) ) |
if_min#( false , add( n , add( m , x ) ) ) | → | min#( add( m , x ) ) |
Linear polynomial interpretation over the naturals
[if_minsort (x1, x2, x3) ] | = | x1 + x2 | |
[rm (x1, x2) ] | = | x1 | |
[eq (x1, x2) ] | = | 0 | |
[0] | = | 0 | |
[nil] | = | 0 | |
[if_min (x1, x2) ] | = | x1 | |
[minsort (x1, x2) ] | = | x1 + x2 | |
[min# (x1) ] | = | 2 x1 + 3 | |
[true] | = | 0 | |
[false] | = | 0 | |
[if_rm (x1, x2, x3) ] | = | x1 | |
[app (x1, x2) ] | = | x1 + x2 | |
[add (x1, x2) ] | = | 2 x1 + x2 + 2 | |
[min (x1) ] | = | x1 + 2 | |
[s (x1) ] | = | 0 | |
[le (x1, x2) ] | = | 0 | |
[if_min# (x1, x2) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
le#( s( x ) , s( y ) ) | → | le#( x , y ) |
Linear polynomial interpretation over the naturals
[if_minsort (x1, x2, x3) ] | = | x1 + x2 | |
[le# (x1, x2) ] | = | x1 | |
[eq (x1, x2) ] | = | 2 x1 | |
[rm (x1, x2) ] | = | x1 | |
[0] | = | 2 | |
[nil] | = | 0 | |
[if_min (x1, x2) ] | = | 2 x1 + 1 | |
[minsort (x1, x2) ] | = | x1 + x2 | |
[true] | = | 3 | |
[false] | = | 0 | |
[if_rm (x1, x2, x3) ] | = | x1 | |
[app (x1, x2) ] | = | x1 + x2 | |
[add (x1, x2) ] | = | 2 x1 + x2 | |
[min (x1) ] | = | 2 x1 + 1 | |
[s (x1) ] | = | 2 x1 + 1 | |
[le (x1, x2) ] | = | 3 x1 + 2 x2 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
app#( add( n , x ) , y ) | → | app#( x , y ) |
Linear polynomial interpretation over the naturals
[if_minsort (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[eq (x1, x2) ] | = | 2 | |
[rm (x1, x2) ] | = | x1 | |
[0] | = | 1 | |
[app# (x1, x2) ] | = | 2 x1 | |
[nil] | = | 0 | |
[if_min (x1, x2) ] | = | 2 x1 | |
[minsort (x1, x2) ] | = | 2 x1 + 2 x2 | |
[true] | = | 0 | |
[false] | = | 2 | |
[if_rm (x1, x2, x3) ] | = | x1 | |
[app (x1, x2) ] | = | x1 + x2 | |
[add (x1, x2) ] | = | x1 + x2 + 1 | |
[min (x1) ] | = | 2 x1 + 1 | |
[s (x1) ] | = | 3 x1 | |
[le (x1, x2) ] | = | 3 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.