minus#( s( x ) , s( y ) ) | → | minus#( x , y ) |
quot#( s( x ) , s( y ) ) | → | quot#( minus( x , y ) , s( y ) ) |
quot#( s( x ) , s( y ) ) | → | minus#( x , y ) |
plus#( s( x ) , y ) | → | plus#( x , y ) |
minus#( minus( x , y ) , z ) | → | minus#( x , plus( y , z ) ) |
minus#( minus( x , y ) , z ) | → | plus#( y , z ) |
The dependency pairs are split into 3 component(s).
quot#( s( x ) , s( y ) ) | → | quot#( minus( x , y ) , s( y ) ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | x1 | |
[quot# (x1, x2) ] | = | x1 | |
[plus (x1, x2) ] | = | 2 x1 + x2 + 2 | |
[quot (x1, x2) ] | = | x1 | |
[s (x1) ] | = | x1 + 2 | |
[0] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
minus#( minus( x , y ) , z ) | → | minus#( x , plus( y , z ) ) |
minus#( s( x ) , s( y ) ) | → | minus#( x , y ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 3 x1 + 2 | |
[plus (x1, x2) ] | = | x1 + 2 | |
[quot (x1, x2) ] | = | 0 | |
[s (x1) ] | = | x1 | |
[0] | = | 0 | |
[minus# (x1, x2) ] | = | 2 x1 + x2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
minus#( s( x ) , s( y ) ) | → | minus#( x , y ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | x1 | |
[plus (x1, x2) ] | = | 2 x1 + 2 x2 | |
[quot (x1, x2) ] | = | 2 x1 + 2 | |
[s (x1) ] | = | x1 + 2 | |
[0] | = | 0 | |
[minus# (x1, x2) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
plus#( s( x ) , y ) | → | plus#( x , y ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | x1 | |
[plus (x1, x2) ] | = | 2 x1 + 2 x2 + 2 | |
[quot (x1, x2) ] | = | x1 | |
[s (x1) ] | = | x1 + 2 | |
[0] | = | 0 | |
[plus# (x1, x2) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.