| le#( s( x ) , s( y ) ) | → | le#( x , y ) |
| minus#( x , s( y ) ) | → | pred#( minus( x , y ) ) |
| minus#( x , s( y ) ) | → | minus#( x , y ) |
| gcd#( s( x ) , s( y ) ) | → | if_gcd#( le( y , x ) , s( x ) , s( y ) ) |
| gcd#( s( x ) , s( y ) ) | → | le#( y , x ) |
| if_gcd#( true , s( x ) , s( y ) ) | → | gcd#( minus( x , y ) , s( y ) ) |
| if_gcd#( true , s( x ) , s( y ) ) | → | minus#( x , y ) |
| if_gcd#( false , s( x ) , s( y ) ) | → | gcd#( minus( y , x ) , s( x ) ) |
| if_gcd#( false , s( x ) , s( y ) ) | → | minus#( y , x ) |
The dependency pairs are split into 3 component(s).
| gcd#( s( x ) , s( y ) ) | → | if_gcd#( le( y , x ) , s( x ) , s( y ) ) |
| if_gcd#( true , s( x ) , s( y ) ) | → | gcd#( minus( x , y ) , s( y ) ) |
| if_gcd#( false , s( x ) , s( y ) ) | → | gcd#( minus( y , x ) , s( x ) ) |
Linear polynomial interpretation over the naturals
| [true] | = | 0 | |
| [minus (x1, x2) ] | = | x1 | |
| [gcd# (x1, x2) ] | = | x1 + x2 + 2 | |
| [if_gcd# (x1, x2, x3) ] | = | x1 + x2 | |
| [false] | = | 0 | |
| [s (x1) ] | = | x1 + 2 | |
| [0] | = | 2 | |
| [le (x1, x2) ] | = | 0 | |
| [gcd (x1, x2) ] | = | 2 x1 + 2 x2 + 1 | |
| [if_gcd (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 1 | |
| [pred (x1) ] | = | x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| if_gcd#( true , s( x ) , s( y ) ) | → | gcd#( minus( x , y ) , s( y ) ) |
| if_gcd#( false , s( x ) , s( y ) ) | → | gcd#( minus( y , x ) , s( x ) ) |
The dependency pairs are split into 0 component(s).
| le#( s( x ) , s( y ) ) | → | le#( x , y ) |
Linear polynomial interpretation over the naturals
| [true] | = | 0 | |
| [minus (x1, x2) ] | = | x1 | |
| [false] | = | 0 | |
| [le# (x1, x2) ] | = | x1 + x2 | |
| [s (x1) ] | = | 2 x1 + 1 | |
| [0] | = | 1 | |
| [le (x1, x2) ] | = | x1 | |
| [gcd (x1, x2) ] | = | 2 x1 + x2 | |
| [if_gcd (x1, x2, x3) ] | = | 2 x1 + x2 | |
| [pred (x1) ] | = | x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.
| minus#( x , s( y ) ) | → | minus#( x , y ) |
Linear polynomial interpretation over the naturals
| [true] | = | 0 | |
| [minus (x1, x2) ] | = | x1 | |
| [false] | = | 2 | |
| [s (x1) ] | = | 2 x1 + 2 | |
| [0] | = | 1 | |
| [le (x1, x2) ] | = | 2 x1 | |
| [gcd (x1, x2) ] | = | 2 x1 + x2 | |
| [if_gcd (x1, x2, x3) ] | = | 2 x1 + x2 | |
| [pred (x1) ] | = | x1 | |
| [minus# (x1, x2) ] | = | 3 x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.