le#( s( x ) , s( y ) ) | → | le#( x , y ) |
minus#( s( x ) , y ) | → | if_minus#( le( s( x ) , y ) , s( x ) , y ) |
minus#( s( x ) , y ) | → | le#( s( x ) , y ) |
if_minus#( false , s( x ) , y ) | → | minus#( x , y ) |
gcd#( s( x ) , s( y ) ) | → | if_gcd#( le( y , x ) , s( x ) , s( y ) ) |
gcd#( s( x ) , s( y ) ) | → | le#( y , x ) |
if_gcd#( true , s( x ) , s( y ) ) | → | gcd#( minus( x , y ) , s( y ) ) |
if_gcd#( true , s( x ) , s( y ) ) | → | minus#( x , y ) |
if_gcd#( false , s( x ) , s( y ) ) | → | gcd#( minus( y , x ) , s( x ) ) |
if_gcd#( false , s( x ) , s( y ) ) | → | minus#( y , x ) |
The dependency pairs are split into 3 component(s).
if_gcd#( true , s( x ) , s( y ) ) | → | gcd#( minus( x , y ) , s( y ) ) |
gcd#( s( x ) , s( y ) ) | → | if_gcd#( le( y , x ) , s( x ) , s( y ) ) |
if_gcd#( false , s( x ) , s( y ) ) | → | gcd#( minus( y , x ) , s( x ) ) |
Linear polynomial interpretation over the naturals
[true] | = | 0 | |
[minus (x1, x2) ] | = | 2 x1 | |
[if_gcd# (x1, x2, x3) ] | = | 3 x1 + 3 x2 | |
[gcd# (x1, x2) ] | = | 3 x1 + 3 x2 + 1 | |
[false] | = | 0 | |
[if_minus (x1, x2, x3) ] | = | 2 x1 | |
[s (x1) ] | = | 3 x1 + 3 | |
[0] | = | 0 | |
[le (x1, x2) ] | = | 0 | |
[gcd (x1, x2) ] | = | x1 + x2 + 3 | |
[if_gcd (x1, x2, x3) ] | = | x1 + x2 + 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
minus#( s( x ) , y ) | → | if_minus#( le( s( x ) , y ) , s( x ) , y ) |
if_minus#( false , s( x ) , y ) | → | minus#( x , y ) |
Linear polynomial interpretation over the naturals
[true] | = | 0 | |
[minus (x1, x2) ] | = | x1 | |
[false] | = | 0 | |
[if_minus (x1, x2, x3) ] | = | x1 | |
[s (x1) ] | = | 2 x1 + 2 | |
[0] | = | 0 | |
[if_minus# (x1, x2, x3) ] | = | x1 | |
[le (x1, x2) ] | = | 0 | |
[gcd (x1, x2) ] | = | x1 + x2 + 2 | |
[if_gcd (x1, x2, x3) ] | = | x1 + x2 | |
[minus# (x1, x2) ] | = | 2 x1 + 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
le#( s( x ) , s( y ) ) | → | le#( x , y ) |
Linear polynomial interpretation over the naturals
[true] | = | 0 | |
[minus (x1, x2) ] | = | x1 | |
[false] | = | 0 | |
[if_minus (x1, x2, x3) ] | = | x1 | |
[le# (x1, x2) ] | = | x1 | |
[s (x1) ] | = | 2 x1 + 1 | |
[0] | = | 0 | |
[le (x1, x2) ] | = | 2 x1 | |
[gcd (x1, x2) ] | = | 2 x1 + x2 + 1 | |
[if_gcd (x1, x2, x3) ] | = | x1 + x2 + x3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.