| le#( s( x ) , s( y ) ) | → | le#( x , y ) |
| minus#( s( x ) , y ) | → | if_minus#( le( s( x ) , y ) , s( x ) , y ) |
| minus#( s( x ) , y ) | → | le#( s( x ) , y ) |
| if_minus#( false , s( x ) , y ) | → | minus#( x , y ) |
| quot#( s( x ) , s( y ) ) | → | quot#( minus( x , y ) , s( y ) ) |
| quot#( s( x ) , s( y ) ) | → | minus#( x , y ) |
| log#( s( s( x ) ) ) | → | log#( s( quot( x , s( s( 0 ) ) ) ) ) |
| log#( s( s( x ) ) ) | → | quot#( x , s( s( 0 ) ) ) |
The dependency pairs are split into 4 component(s).
| log#( s( s( x ) ) ) | → | log#( s( quot( x , s( s( 0 ) ) ) ) ) |
Linear polynomial interpretation over the naturals
| [true] | = | 0 | |
| [minus (x1, x2) ] | = | x1 | |
| [log (x1) ] | = | x1 | |
| [log# (x1) ] | = | x1 | |
| [false] | = | 0 | |
| [if_minus (x1, x2, x3) ] | = | x1 | |
| [quot (x1, x2) ] | = | x1 | |
| [s (x1) ] | = | 2 x1 + 2 | |
| [0] | = | 0 | |
| [le (x1, x2) ] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.
| quot#( s( x ) , s( y ) ) | → | quot#( minus( x , y ) , s( y ) ) |
Linear polynomial interpretation over the naturals
| [minus (x1, x2) ] | = | x1 | |
| [true] | = | 0 | |
| [log (x1) ] | = | 2 x1 | |
| [quot# (x1, x2) ] | = | 2 x1 | |
| [false] | = | 0 | |
| [if_minus (x1, x2, x3) ] | = | x1 | |
| [quot (x1, x2) ] | = | x1 | |
| [s (x1) ] | = | 2 x1 + 1 | |
| [0] | = | 0 | |
| [le (x1, x2) ] | = | x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.
| minus#( s( x ) , y ) | → | if_minus#( le( s( x ) , y ) , s( x ) , y ) |
| if_minus#( false , s( x ) , y ) | → | minus#( x , y ) |
Linear polynomial interpretation over the naturals
| [true] | = | 0 | |
| [minus (x1, x2) ] | = | x1 | |
| [log (x1) ] | = | 2 x1 + 1 | |
| [false] | = | 0 | |
| [if_minus (x1, x2, x3) ] | = | x1 | |
| [quot (x1, x2) ] | = | x1 | |
| [s (x1) ] | = | 2 x1 + 1 | |
| [0] | = | 0 | |
| [if_minus# (x1, x2, x3) ] | = | x1 + x2 | |
| [le (x1, x2) ] | = | 1 | |
| [minus# (x1, x2) ] | = | 2 x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| minus#( s( x ) , y ) | → | if_minus#( le( s( x ) , y ) , s( x ) , y ) |
The dependency pairs are split into 0 component(s).
| le#( s( x ) , s( y ) ) | → | le#( x , y ) |
Linear polynomial interpretation over the naturals
| [true] | = | 1 | |
| [minus (x1, x2) ] | = | x1 | |
| [log (x1) ] | = | x1 | |
| [false] | = | 3 | |
| [if_minus (x1, x2, x3) ] | = | x1 | |
| [quot (x1, x2) ] | = | x1 | |
| [le# (x1, x2) ] | = | x1 | |
| [s (x1) ] | = | x1 + 1 | |
| [0] | = | 0 | |
| [le (x1, x2) ] | = | 2 x1 + 2 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.