le#( s( x ) , s( y ) ) | → | le#( x , y ) |
minus#( s( x ) , y ) | → | if_minus#( le( s( x ) , y ) , s( x ) , y ) |
minus#( s( x ) , y ) | → | le#( s( x ) , y ) |
if_minus#( false , s( x ) , y ) | → | minus#( x , y ) |
quot#( s( x ) , s( y ) ) | → | quot#( minus( x , y ) , s( y ) ) |
quot#( s( x ) , s( y ) ) | → | minus#( x , y ) |
log#( s( s( x ) ) ) | → | log#( s( quot( x , s( s( 0 ) ) ) ) ) |
log#( s( s( x ) ) ) | → | quot#( x , s( s( 0 ) ) ) |
The dependency pairs are split into 4 component(s).
log#( s( s( x ) ) ) | → | log#( s( quot( x , s( s( 0 ) ) ) ) ) |
Linear polynomial interpretation over the naturals
[true] | = | 0 | |
[minus (x1, x2) ] | = | x1 | |
[log (x1) ] | = | x1 | |
[log# (x1) ] | = | x1 | |
[false] | = | 0 | |
[if_minus (x1, x2, x3) ] | = | x1 | |
[quot (x1, x2) ] | = | x1 | |
[s (x1) ] | = | 2 x1 + 2 | |
[0] | = | 0 | |
[le (x1, x2) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
quot#( s( x ) , s( y ) ) | → | quot#( minus( x , y ) , s( y ) ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | x1 | |
[true] | = | 0 | |
[log (x1) ] | = | 2 x1 | |
[quot# (x1, x2) ] | = | 2 x1 | |
[false] | = | 0 | |
[if_minus (x1, x2, x3) ] | = | x1 | |
[quot (x1, x2) ] | = | x1 | |
[s (x1) ] | = | 2 x1 + 1 | |
[0] | = | 0 | |
[le (x1, x2) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
minus#( s( x ) , y ) | → | if_minus#( le( s( x ) , y ) , s( x ) , y ) |
if_minus#( false , s( x ) , y ) | → | minus#( x , y ) |
Linear polynomial interpretation over the naturals
[true] | = | 0 | |
[minus (x1, x2) ] | = | x1 | |
[log (x1) ] | = | 2 x1 + 1 | |
[false] | = | 0 | |
[if_minus (x1, x2, x3) ] | = | x1 | |
[quot (x1, x2) ] | = | x1 | |
[s (x1) ] | = | 2 x1 + 1 | |
[0] | = | 0 | |
[if_minus# (x1, x2, x3) ] | = | x1 + x2 | |
[le (x1, x2) ] | = | 1 | |
[minus# (x1, x2) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
minus#( s( x ) , y ) | → | if_minus#( le( s( x ) , y ) , s( x ) , y ) |
The dependency pairs are split into 0 component(s).
le#( s( x ) , s( y ) ) | → | le#( x , y ) |
Linear polynomial interpretation over the naturals
[true] | = | 1 | |
[minus (x1, x2) ] | = | x1 | |
[log (x1) ] | = | x1 | |
[false] | = | 3 | |
[if_minus (x1, x2, x3) ] | = | x1 | |
[quot (x1, x2) ] | = | x1 | |
[le# (x1, x2) ] | = | x1 | |
[s (x1) ] | = | x1 + 1 | |
[0] | = | 0 | |
[le (x1, x2) ] | = | 2 x1 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.