minus_active#( s( x ) , s( y ) ) | → | minus_active#( x , y ) |
mark#( s( x ) ) | → | mark#( x ) |
mark#( minus( x , y ) ) | → | minus_active#( x , y ) |
mark#( ge( x , y ) ) | → | ge_active#( x , y ) |
ge_active#( s( x ) , s( y ) ) | → | ge_active#( x , y ) |
mark#( div( x , y ) ) | → | div_active#( mark( x ) , y ) |
mark#( div( x , y ) ) | → | mark#( x ) |
mark#( if( x , y , z ) ) | → | if_active#( mark( x ) , y , z ) |
mark#( if( x , y , z ) ) | → | mark#( x ) |
div_active#( s( x ) , s( y ) ) | → | if_active#( ge_active( x , y ) , s( div( minus( x , y ) , s( y ) ) ) , 0 ) |
div_active#( s( x ) , s( y ) ) | → | ge_active#( x , y ) |
if_active#( true , x , y ) | → | mark#( x ) |
if_active#( false , x , y ) | → | mark#( y ) |
The dependency pairs are split into 3 component(s).
mark#( div( x , y ) ) | → | div_active#( mark( x ) , y ) |
div_active#( s( x ) , s( y ) ) | → | if_active#( ge_active( x , y ) , s( div( minus( x , y ) , s( y ) ) ) , 0 ) |
if_active#( true , x , y ) | → | mark#( x ) |
mark#( s( x ) ) | → | mark#( x ) |
mark#( div( x , y ) ) | → | mark#( x ) |
mark#( if( x , y , z ) ) | → | if_active#( mark( x ) , y , z ) |
if_active#( false , x , y ) | → | mark#( y ) |
mark#( if( x , y , z ) ) | → | mark#( x ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[mark (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | x1 + x2 + 2 x3 | |
[if_active# (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 2 x3 | |
[mark# (x1) ] | = | 2 x1 + 3 | |
[div_active# (x1, x2) ] | = | 3 x1 + 3 | |
[0] | = | 0 | |
[div (x1, x2) ] | = | 3 x1 | |
[minus_active (x1, x2) ] | = | 0 | |
[ge (x1, x2) ] | = | 3 x1 + 2 | |
[ge_active (x1, x2) ] | = | 3 x1 + 2 | |
[true] | = | 2 | |
[false] | = | 2 | |
[s (x1) ] | = | 2 x1 + 1 | |
[div_active (x1, x2) ] | = | 3 x1 | |
[if_active (x1, x2, x3) ] | = | x1 + x2 + 2 x3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
mark#( div( x , y ) ) | → | div_active#( mark( x ) , y ) |
div_active#( s( x ) , s( y ) ) | → | if_active#( ge_active( x , y ) , s( div( minus( x , y ) , s( y ) ) ) , 0 ) |
mark#( div( x , y ) ) | → | mark#( x ) |
mark#( if( x , y , z ) ) | → | mark#( x ) |
The dependency pairs are split into 1 component(s).
mark#( if( x , y , z ) ) | → | mark#( x ) |
mark#( div( x , y ) ) | → | mark#( x ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 2 | |
[if (x1, x2, x3) ] | = | x1 + 2 x2 + 2 x3 + 3 | |
[mark (x1) ] | = | 3 x1 | |
[mark# (x1) ] | = | x1 | |
[0] | = | 0 | |
[div (x1, x2) ] | = | x1 + x2 + 3 | |
[minus_active (x1, x2) ] | = | 3 | |
[ge (x1, x2) ] | = | 0 | |
[ge_active (x1, x2) ] | = | 0 | |
[true] | = | 0 | |
[false] | = | 0 | |
[s (x1) ] | = | 0 | |
[div_active (x1, x2) ] | = | x1 + 2 x2 + 3 | |
[if_active (x1, x2, x3) ] | = | x1 + 3 x2 + 3 x3 + 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
minus_active#( s( x ) , s( y ) ) | → | minus_active#( x , y ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[mark (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | x1 + 2 x2 | |
[0] | = | 0 | |
[minus_active# (x1, x2) ] | = | x1 | |
[div (x1, x2) ] | = | 2 x1 | |
[minus_active (x1, x2) ] | = | 0 | |
[ge (x1, x2) ] | = | x1 + 2 | |
[ge_active (x1, x2) ] | = | x1 + 2 | |
[true] | = | 2 | |
[false] | = | 1 | |
[s (x1) ] | = | x1 + 1 | |
[div_active (x1, x2) ] | = | 2 x1 | |
[if_active (x1, x2, x3) ] | = | x1 + 2 x2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
ge_active#( s( x ) , s( y ) ) | → | ge_active#( x , y ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | 0 | |
[mark (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | x1 + 2 x2 | |
[0] | = | 0 | |
[div (x1, x2) ] | = | 2 x1 | |
[minus_active (x1, x2) ] | = | 0 | |
[ge (x1, x2) ] | = | x1 + 2 | |
[ge_active (x1, x2) ] | = | x1 + 2 | |
[true] | = | 2 | |
[ge_active# (x1, x2) ] | = | x1 | |
[false] | = | 1 | |
[s (x1) ] | = | x1 + 1 | |
[div_active (x1, x2) ] | = | 2 x1 | |
[if_active (x1, x2, x3) ] | = | x1 + 2 x2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.