Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | X : symb | _match_1 : symb | active : symb | c : symb | check : symb | f : symb | found : symb | mark : symb | ok : symb | proper : symb | start : symb | top : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.X => 0 | M._match_1 => 2 | M.active => 1 | M.c => 0 | M.check => 1 | M.f => 1 | M.found => 1 | M.mark => 1 | M.ok => 1 | M.proper => 1 | M.start => 1 | M.top => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition X := F0 M.X Vnil. Definition _match_1 x2 x1 := F0 M._match_1 (Vcons x2 (Vcons x1 Vnil)). Definition active x1 := F0 M.active (Vcons x1 Vnil). Definition c := F0 M.c Vnil. Definition check x1 := F0 M.check (Vcons x1 Vnil). Definition f x1 := F0 M.f (Vcons x1 Vnil). Definition found x1 := F0 M.found (Vcons x1 Vnil). Definition mark x1 := F0 M.mark (Vcons x1 Vnil). Definition ok x1 := F0 M.ok (Vcons x1 Vnil). Definition proper x1 := F0 M.proper (Vcons x1 Vnil). Definition start x1 := F0 M.start (Vcons x1 Vnil). Definition top x1 := F0 M.top (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.active (S0.f (V0 0))) (S0.mark (V0 0)) :: R0 (S0.top (S0.active S0.c)) (S0.top (S0.mark S0.c)) :: R0 (S0.top (S0.mark (V0 0))) (S0.top (S0.check (V0 0))) :: R0 (S0.check (S0.f (V0 0))) (S0.f (S0.check (V0 0))) :: R0 (S0.check (V0 0)) (S0.start (S0._match_1 (S0.f S0.X) (V0 0))) :: R0 (S0._match_1 (S0.f (V0 0)) (S0.f (V0 1))) (S0.f (S0._match_1 (V0 0) (V0 1))) :: R0 (S0._match_1 S0.X (V0 0)) (S0.proper (V0 0)) :: R0 (S0.proper S0.c) (S0.ok S0.c) :: R0 (S0.proper (S0.f (V0 0))) (S0.f (S0.proper (V0 0))) :: R0 (S0.f (S0.ok (V0 0))) (S0.ok (S0.f (V0 0))) :: R0 (S0.start (S0.ok (V0 0))) (S0.found (V0 0)) :: R0 (S0.f (S0.found (V0 0))) (S0.found (S0.f (V0 0))) :: R0 (S0.top (S0.found (V0 0))) (S0.top (S0.active (V0 0))) :: R0 (S0.active (S0.f (V0 0))) (S0.f (S0.active (V0 0))) :: R0 (S0.f (S0.mark (V0 0))) (S0.mark (S0.f (V0 0))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition hX := F1 (hd_symb s1_p M.X) Vnil. Definition X := F1 (int_symb s1_p M.X) Vnil. Definition h_match_1 x2 x1 := F1 (hd_symb s1_p M._match_1) (Vcons x2 (Vcons x1 Vnil)). Definition _match_1 x2 x1 := F1 (int_symb s1_p M._match_1) (Vcons x2 (Vcons x1 Vnil)). Definition hactive x1 := F1 (hd_symb s1_p M.active) (Vcons x1 Vnil). Definition active x1 := F1 (int_symb s1_p M.active) (Vcons x1 Vnil). Definition hc := F1 (hd_symb s1_p M.c) Vnil. Definition c := F1 (int_symb s1_p M.c) Vnil. Definition hcheck x1 := F1 (hd_symb s1_p M.check) (Vcons x1 Vnil). Definition check x1 := F1 (int_symb s1_p M.check) (Vcons x1 Vnil). Definition hf x1 := F1 (hd_symb s1_p M.f) (Vcons x1 Vnil). Definition f x1 := F1 (int_symb s1_p M.f) (Vcons x1 Vnil). Definition hfound x1 := F1 (hd_symb s1_p M.found) (Vcons x1 Vnil). Definition found x1 := F1 (int_symb s1_p M.found) (Vcons x1 Vnil). Definition hmark x1 := F1 (hd_symb s1_p M.mark) (Vcons x1 Vnil). Definition mark x1 := F1 (int_symb s1_p M.mark) (Vcons x1 Vnil). Definition hok x1 := F1 (hd_symb s1_p M.ok) (Vcons x1 Vnil). Definition ok x1 := F1 (int_symb s1_p M.ok) (Vcons x1 Vnil). Definition hproper x1 := F1 (hd_symb s1_p M.proper) (Vcons x1 Vnil). Definition proper x1 := F1 (int_symb s1_p M.proper) (Vcons x1 Vnil). Definition hstart x1 := F1 (hd_symb s1_p M.start) (Vcons x1 Vnil). Definition start x1 := F1 (int_symb s1_p M.start) (Vcons x1 Vnil). Definition htop x1 := F1 (hd_symb s1_p M.top) (Vcons x1 Vnil). Definition top x1 := F1 (int_symb s1_p M.top) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hf (S1.found (V1 0))) (S1.hf (V1 0)) :: R1 (S1.hf (S1.ok (V1 0))) (S1.hf (V1 0)) :: R1 (S1.hf (S1.mark (V1 0))) (S1.hf (V1 0)) :: nil) :: ( R1 (S1.hactive (S1.f (V1 0))) (S1.hf (S1.active (V1 0))) :: nil) :: ( R1 (S1.hactive (S1.f (V1 0))) (S1.hactive (V1 0)) :: nil) :: ( R1 (S1.htop (S1.found (V1 0))) (S1.hactive (V1 0)) :: nil) :: ( R1 (S1.hproper (S1.f (V1 0))) (S1.hf (S1.proper (V1 0))) :: nil) :: ( R1 (S1.hproper (S1.f (V1 0))) (S1.hproper (V1 0)) :: nil) :: ( R1 (S1.h_match_1 (S1.X) (V1 0)) (S1.hproper (V1 0)) :: nil) :: ( R1 (S1.h_match_1 (S1.f (V1 0)) (S1.f (V1 1))) (S1.hf (S1._match_1 (V1 0) (V1 1))) :: nil) :: ( R1 (S1.h_match_1 (S1.f (V1 0)) (S1.f (V1 1))) (S1.h_match_1 (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hcheck (V1 0)) (S1.hf (S1.X)) :: nil) :: ( R1 (S1.hcheck (V1 0)) (S1.h_match_1 (S1.f (S1.X)) (V1 0)) :: nil) :: ( R1 (S1.hcheck (V1 0)) (S1.hstart (S1._match_1 (S1.f (S1.X)) (V1 0))) :: nil) :: ( R1 (S1.hcheck (S1.f (V1 0))) (S1.hf (S1.check (V1 0))) :: nil) :: ( R1 (S1.hcheck (S1.f (V1 0))) (S1.hcheck (V1 0)) :: nil) :: ( R1 (S1.htop (S1.mark (V1 0))) (S1.hcheck (V1 0)) :: nil) :: ( R1 (S1.htop (S1.mark (V1 0))) (S1.htop (S1.check (V1 0))) :: R1 (S1.htop (S1.active (S1.c))) (S1.htop (S1.mark (S1.c))) :: R1 (S1.htop (S1.found (V1 0))) (S1.htop (S1.active (V1 0))) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.f) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.f) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => nil | (int_symb M.top) => nil | (hd_symb M.c) => nil | (int_symb M.c) => (3%Z, Vnil) :: nil | (hd_symb M.check) => nil | (int_symb M.check) => (1%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.start) => nil | (int_symb M.start) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._match_1) => nil | (int_symb M._match_1) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.X) => nil | (int_symb M.X) => nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (3%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.found) => nil | (int_symb M.found) => (1%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.f) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.f) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => nil | (int_symb M.top) => nil | (hd_symb M.c) => nil | (int_symb M.c) => nil | (hd_symb M.check) => nil | (int_symb M.check) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.start) => nil | (int_symb M.start) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._match_1) => nil | (int_symb M._match_1) => nil | (hd_symb M.X) => nil | (int_symb M.X) => nil | (hd_symb M.proper) => nil | (int_symb M.proper) => nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.found) => nil | (int_symb M.found) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* polynomial interpretation 3 *) Module PIS3 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.active) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.f) => nil | (int_symb M.f) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => nil | (int_symb M.top) => nil | (hd_symb M.c) => nil | (int_symb M.c) => (1%Z, Vnil) :: nil | (hd_symb M.check) => nil | (int_symb M.check) => (1%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.start) => nil | (int_symb M.start) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._match_1) => nil | (int_symb M._match_1) => (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.X) => nil | (int_symb M.X) => nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.found) => nil | (int_symb M.found) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS3. Module PI3 := PolyInt PIS3. (* polynomial interpretation 4 *) Module PIS4 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.f) => nil | (int_symb M.f) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => nil | (int_symb M.top) => nil | (hd_symb M.c) => nil | (int_symb M.c) => (1%Z, Vnil) :: nil | (hd_symb M.check) => nil | (int_symb M.check) => (1%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.start) => nil | (int_symb M.start) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._match_1) => nil | (int_symb M._match_1) => (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.X) => nil | (int_symb M.X) => nil | (hd_symb M.proper) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.proper) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.found) => nil | (int_symb M.found) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS4. Module PI4 := PolyInt PIS4. (* polynomial interpretation 5 *) Module PIS5 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.f) => nil | (int_symb M.f) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => nil | (hd_symb M.top) => nil | (int_symb M.top) => nil | (hd_symb M.c) => nil | (int_symb M.c) => (1%Z, Vnil) :: nil | (hd_symb M.check) => nil | (int_symb M.check) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.start) => nil | (int_symb M.start) => nil | (hd_symb M._match_1) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M._match_1) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.X) => nil | (int_symb M.X) => nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => nil | (hd_symb M.found) => nil | (int_symb M.found) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS5. Module PI5 := PolyInt PIS5. (* polynomial interpretation 6 *) Module PIS6 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.f) => nil | (int_symb M.f) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => nil | (int_symb M.top) => nil | (hd_symb M.c) => nil | (int_symb M.c) => (1%Z, Vnil) :: nil | (hd_symb M.check) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.check) => (1%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.start) => nil | (int_symb M.start) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._match_1) => nil | (int_symb M._match_1) => (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.X) => nil | (int_symb M.X) => nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.found) => nil | (int_symb M.found) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS6. Module PI6 := PolyInt PIS6. (* polynomial interpretation 7 *) Module PIS7 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.f) => nil | (int_symb M.f) => nil | (hd_symb M.mark) => nil | (int_symb M.mark) => nil | (hd_symb M.top) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.top) => nil | (hd_symb M.c) => nil | (int_symb M.c) => (2%Z, Vnil) :: nil | (hd_symb M.check) => nil | (int_symb M.check) => nil | (hd_symb M.start) => nil | (int_symb M.start) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._match_1) => nil | (int_symb M._match_1) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.X) => nil | (int_symb M.X) => (2%Z, Vnil) :: nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (2%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.found) => nil | (int_symb M.found) => (2%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS7. Module PI7 := PolyInt PIS7. (* polynomial interpretation 8 *) Module PIS8 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.f) => nil | (int_symb M.f) => (2%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.top) => nil | (hd_symb M.c) => nil | (int_symb M.c) => nil | (hd_symb M.check) => nil | (int_symb M.check) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.start) => nil | (int_symb M.start) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._match_1) => nil | (int_symb M._match_1) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.X) => nil | (int_symb M.X) => nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.found) => nil | (int_symb M.found) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS8. Module PI8 := PolyInt PIS8. (* polynomial interpretation 9 *) Module PIS9 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.active) => nil | (int_symb M.active) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.f) => nil | (int_symb M.f) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.mark) => nil | (int_symb M.mark) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.top) => (3%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.top) => nil | (hd_symb M.c) => nil | (int_symb M.c) => nil | (hd_symb M.check) => nil | (int_symb M.check) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.start) => nil | (int_symb M.start) => nil | (hd_symb M._match_1) => nil | (int_symb M._match_1) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.X) => nil | (int_symb M.X) => (3%Z, Vnil) :: nil | (hd_symb M.proper) => nil | (int_symb M.proper) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.ok) => nil | (int_symb M.ok) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.found) => nil | (int_symb M.found) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS9. Module PI9 := PolyInt PIS9. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. right. PI1.prove_termination. PI2.prove_termination. termination_trivial. left. co_scc. right. PI3.prove_termination. termination_trivial. left. co_scc. left. co_scc. right. PI4.prove_termination. termination_trivial. left. co_scc. left. co_scc. right. PI5.prove_termination. termination_trivial. left. co_scc. left. co_scc. left. co_scc. left. co_scc. right. PI6.prove_termination. termination_trivial. left. co_scc. right. PI7.prove_termination. PI8.prove_termination. PI9.prove_termination. termination_trivial. Qed.