ack_in#( s( m ) , 0 ) | → | u11#( ack_in( m , s( 0 ) ) ) |
ack_in#( s( m ) , 0 ) | → | ack_in#( m , s( 0 ) ) |
ack_in#( s( m ) , s( n ) ) | → | u21#( ack_in( s( m ) , n ) , m ) |
ack_in#( s( m ) , s( n ) ) | → | ack_in#( s( m ) , n ) |
u21#( ack_out( n ) , m ) | → | u22#( ack_in( m , n ) ) |
u21#( ack_out( n ) , m ) | → | ack_in#( m , n ) |
The dependency pairs are split into 1 component(s).
ack_in#( s( m ) , s( n ) ) | → | u21#( ack_in( s( m ) , n ) , m ) |
u21#( ack_out( n ) , m ) | → | ack_in#( m , n ) |
ack_in#( s( m ) , 0 ) | → | ack_in#( m , s( 0 ) ) |
ack_in#( s( m ) , s( n ) ) | → | ack_in#( s( m ) , n ) |
Linear polynomial interpretation over the naturals
[u21# (x1, x2) ] | = | 2 x1 + 1 | |
[ack_in (x1, x2) ] | = | 2 x1 + 2 x2 | |
[u22 (x1) ] | = | 1 | |
[u21 (x1, x2) ] | = | x1 + 2 | |
[ack_in# (x1, x2) ] | = | 2 x1 | |
[s (x1) ] | = | x1 + 2 | |
[0] | = | 2 | |
[u11 (x1) ] | = | x1 | |
[ack_out (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
ack_in#( s( m ) , s( n ) ) | → | ack_in#( s( m ) , n ) |
Linear polynomial interpretation over the naturals
[ack_in (x1, x2) ] | = | 2 x1 | |
[u22 (x1) ] | = | 0 | |
[u21 (x1, x2) ] | = | 3 | |
[ack_in# (x1, x2) ] | = | 3 x1 | |
[s (x1) ] | = | 2 x1 + 2 | |
[0] | = | 3 | |
[u11 (x1) ] | = | 1 | |
[ack_out (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.