Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | append : symb | cons : symb | false : symb | hd : symb | ifappend : symb | is_empty : symb | nil : symb | tl : symb | true : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.append => 2 | M.cons => 2 | M.false => 0 | M.hd => 1 | M.ifappend => 3 | M.is_empty => 1 | M.nil => 0 | M.tl => 1 | M.true => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition append x2 x1 := F0 M.append (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F0 M.cons (Vcons x2 (Vcons x1 Vnil)). Definition false := F0 M.false Vnil. Definition hd x1 := F0 M.hd (Vcons x1 Vnil). Definition ifappend x3 x2 x1 := F0 M.ifappend (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition is_empty x1 := F0 M.is_empty (Vcons x1 Vnil). Definition nil := F0 M.nil Vnil. Definition tl x1 := F0 M.tl (Vcons x1 Vnil). Definition true := F0 M.true Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.is_empty S0.nil) S0.true :: R0 (S0.is_empty (S0.cons (V0 0) (V0 1))) S0.false :: R0 (S0.hd (S0.cons (V0 0) (V0 1))) (V0 0) :: R0 (S0.tl (S0.cons (V0 0) (V0 1))) (V0 1) :: R0 (S0.append (V0 0) (V0 1)) (S0.ifappend (V0 0) (V0 1) (V0 0)) :: R0 (S0.ifappend (V0 0) (V0 1) S0.nil) (V0 1) :: R0 (S0.ifappend (V0 0) (V0 1) (S0.cons (V0 2) (V0 3))) (S0.cons (V0 2) (S0.append (V0 3) (V0 1))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition happend x2 x1 := F1 (hd_symb s1_p M.append) (Vcons x2 (Vcons x1 Vnil)). Definition append x2 x1 := F1 (int_symb s1_p M.append) (Vcons x2 (Vcons x1 Vnil)). Definition hcons x2 x1 := F1 (hd_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F1 (int_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition hfalse := F1 (hd_symb s1_p M.false) Vnil. Definition false := F1 (int_symb s1_p M.false) Vnil. Definition hhd x1 := F1 (hd_symb s1_p M.hd) (Vcons x1 Vnil). Definition hd x1 := F1 (int_symb s1_p M.hd) (Vcons x1 Vnil). Definition hifappend x3 x2 x1 := F1 (hd_symb s1_p M.ifappend) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition ifappend x3 x2 x1 := F1 (int_symb s1_p M.ifappend) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition his_empty x1 := F1 (hd_symb s1_p M.is_empty) (Vcons x1 Vnil). Definition is_empty x1 := F1 (int_symb s1_p M.is_empty) (Vcons x1 Vnil). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition htl x1 := F1 (hd_symb s1_p M.tl) (Vcons x1 Vnil). Definition tl x1 := F1 (int_symb s1_p M.tl) (Vcons x1 Vnil). Definition htrue := F1 (hd_symb s1_p M.true) Vnil. Definition true := F1 (int_symb s1_p M.true) Vnil. End S1. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.is_empty) => nil | (int_symb M.is_empty) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (2%Z, Vnil) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => (2%Z, Vnil) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.false) => nil | (int_symb M.false) => (2%Z, Vnil) :: nil | (hd_symb M.hd) => nil | (int_symb M.hd) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.tl) => nil | (int_symb M.tl) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.append) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.append) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.ifappend) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (int_symb M.ifappend) => (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.happend (V1 0) (V1 1)) (S1.hifappend (V1 0) (V1 1) (V1 0)) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. PI1.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. Qed.