| foldf#( x , cons( y , z ) ) | → | f#( foldf( x , z ) , y ) |
| foldf#( x , cons( y , z ) ) | → | foldf#( x , z ) |
| f#( t , x ) | → | f'#( t , g( x ) ) |
| f#( t , x ) | → | g#( x ) |
| f'#( triple( a , b , c ) , B ) | → | f#( triple( a , b , c ) , A ) |
| f'#( triple( a , b , c ) , A ) | → | f''#( foldf( triple( cons( A , a ) , nil , c ) , b ) ) |
| f'#( triple( a , b , c ) , A ) | → | foldf#( triple( cons( A , a ) , nil , c ) , b ) |
| f''#( triple( a , b , c ) ) | → | foldf#( triple( a , b , nil ) , c ) |
The dependency pairs are split into 1 component(s).
| f#( t , x ) | → | f'#( t , g( x ) ) |
| f'#( triple( a , b , c ) , B ) | → | f#( triple( a , b , c ) , A ) |
| f'#( triple( a , b , c ) , A ) | → | f''#( foldf( triple( cons( A , a ) , nil , c ) , b ) ) |
| f''#( triple( a , b , c ) ) | → | foldf#( triple( a , b , nil ) , c ) |
| foldf#( x , cons( y , z ) ) | → | f#( foldf( x , z ) , y ) |
| foldf#( x , cons( y , z ) ) | → | foldf#( x , z ) |
| f'#( triple( a , b , c ) , A ) | → | foldf#( triple( cons( A , a ) , nil , c ) , b ) |
Linear polynomial interpretation over the naturals
| [triple (x1, x2, x3) ] | = | x1 + x2 | |
| [f''# (x1) ] | = | 2 x1 | |
| [f'' (x1) ] | = | x1 + 1 | |
| [f# (x1, x2) ] | = | 2 x1 | |
| [f'# (x1, x2) ] | = | 2 x1 | |
| [nil] | = | 0 | |
| [g (x1) ] | = | 0 | |
| [cons (x1, x2) ] | = | x1 + x2 + 2 | |
| [C] | = | 0 | |
| [f' (x1, x2) ] | = | x1 + 2 | |
| [A] | = | 0 | |
| [f (x1, x2) ] | = | x1 + x2 + 2 | |
| [foldf# (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [foldf (x1, x2) ] | = | x1 + x2 | |
| [B] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| f#( t , x ) | → | f'#( t , g( x ) ) |
| f'#( triple( a , b , c ) , B ) | → | f#( triple( a , b , c ) , A ) |
| f'#( triple( a , b , c ) , A ) | → | f''#( foldf( triple( cons( A , a ) , nil , c ) , b ) ) |
| f''#( triple( a , b , c ) ) | → | foldf#( triple( a , b , nil ) , c ) |
| f'#( triple( a , b , c ) , A ) | → | foldf#( triple( cons( A , a ) , nil , c ) , b ) |
The dependency pairs are split into 1 component(s).
| f'#( triple( a , b , c ) , B ) | → | f#( triple( a , b , c ) , A ) |
| f#( t , x ) | → | f'#( t , g( x ) ) |
Linear polynomial interpretation over the naturals
| [triple (x1, x2, x3) ] | = | 0 | |
| [f# (x1, x2) ] | = | 2 x1 | |
| [f'' (x1) ] | = | 0 | |
| [f'# (x1, x2) ] | = | 2 x1 | |
| [nil] | = | 0 | |
| [g (x1) ] | = | x1 | |
| [cons (x1, x2) ] | = | 0 | |
| [C] | = | 1 | |
| [f' (x1, x2) ] | = | 0 | |
| [A] | = | 0 | |
| [f (x1, x2) ] | = | x1 | |
| [foldf (x1, x2) ] | = | 2 x1 | |
| [B] | = | 1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| f#( t , x ) | → | f'#( t , g( x ) ) |
The dependency pairs are split into 0 component(s).