Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | A : symb | B : symb | C : symb | cons : symb | f : symb | f' : symb | f'' : symb | foldf : symb | g : symb | nil : symb | triple : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.A => 0 | M.B => 0 | M.C => 0 | M.cons => 2 | M.f => 2 | M.f' => 2 | M.f'' => 1 | M.foldf => 2 | M.g => 1 | M.nil => 0 | M.triple => 3 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition A := F0 M.A Vnil. Definition B := F0 M.B Vnil. Definition C := F0 M.C Vnil. Definition cons x2 x1 := F0 M.cons (Vcons x2 (Vcons x1 Vnil)). Definition f x2 x1 := F0 M.f (Vcons x2 (Vcons x1 Vnil)). Definition f' x2 x1 := F0 M.f' (Vcons x2 (Vcons x1 Vnil)). Definition f'' x1 := F0 M.f'' (Vcons x1 Vnil). Definition foldf x2 x1 := F0 M.foldf (Vcons x2 (Vcons x1 Vnil)). Definition g x1 := F0 M.g (Vcons x1 Vnil). Definition nil := F0 M.nil Vnil. Definition triple x3 x2 x1 := F0 M.triple (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.g S0.A) S0.A :: R0 (S0.g S0.B) S0.A :: R0 (S0.g S0.B) S0.B :: R0 (S0.g S0.C) S0.A :: R0 (S0.g S0.C) S0.B :: R0 (S0.g S0.C) S0.C :: R0 (S0.foldf (V0 0) S0.nil) (V0 0) :: R0 (S0.foldf (V0 0) (S0.cons (V0 1) (V0 2))) (S0.f (S0.foldf (V0 0) (V0 2)) (V0 1)) :: R0 (S0.f (V0 0) (V0 1)) (S0.f' (V0 0) (S0.g (V0 1))) :: R0 (S0.f' (S0.triple (V0 0) (V0 1) (V0 2)) S0.C) (S0.triple (V0 0) (V0 1) (S0.cons S0.C (V0 2))) :: R0 (S0.f' (S0.triple (V0 0) (V0 1) (V0 2)) S0.B) (S0.f (S0.triple (V0 0) (V0 1) (V0 2)) S0.A) :: R0 (S0.f' (S0.triple (V0 0) (V0 1) (V0 2)) S0.A) (S0.f'' (S0.foldf (S0.triple (S0.cons S0.A (V0 0)) S0.nil (V0 2)) (V0 1))) :: R0 (S0.f'' (S0.triple (V0 0) (V0 1) (V0 2))) (S0.foldf (S0.triple (V0 0) (V0 1) S0.nil) (V0 2)) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition hA := F1 (hd_symb s1_p M.A) Vnil. Definition A := F1 (int_symb s1_p M.A) Vnil. Definition hB := F1 (hd_symb s1_p M.B) Vnil. Definition B := F1 (int_symb s1_p M.B) Vnil. Definition hC := F1 (hd_symb s1_p M.C) Vnil. Definition C := F1 (int_symb s1_p M.C) Vnil. Definition hcons x2 x1 := F1 (hd_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F1 (int_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition hf x2 x1 := F1 (hd_symb s1_p M.f) (Vcons x2 (Vcons x1 Vnil)). Definition f x2 x1 := F1 (int_symb s1_p M.f) (Vcons x2 (Vcons x1 Vnil)). Definition hf' x2 x1 := F1 (hd_symb s1_p M.f') (Vcons x2 (Vcons x1 Vnil)). Definition f' x2 x1 := F1 (int_symb s1_p M.f') (Vcons x2 (Vcons x1 Vnil)). Definition hf'' x1 := F1 (hd_symb s1_p M.f'') (Vcons x1 Vnil). Definition f'' x1 := F1 (int_symb s1_p M.f'') (Vcons x1 Vnil). Definition hfoldf x2 x1 := F1 (hd_symb s1_p M.foldf) (Vcons x2 (Vcons x1 Vnil)). Definition foldf x2 x1 := F1 (int_symb s1_p M.foldf) (Vcons x2 (Vcons x1 Vnil)). Definition hg x1 := F1 (hd_symb s1_p M.g) (Vcons x1 Vnil). Definition g x1 := F1 (int_symb s1_p M.g) (Vcons x1 Vnil). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition htriple x3 x2 x1 := F1 (hd_symb s1_p M.triple) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition triple x3 x2 x1 := F1 (int_symb s1_p M.triple) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hf (V1 0) (V1 1)) (S1.hg (V1 1)) :: nil) :: ( R1 (S1.hf (V1 0) (V1 1)) (S1.hf' (V1 0) (S1.g (V1 1))) :: R1 (S1.hf' (S1.triple (V1 0) (V1 1) (V1 2)) (S1.B)) (S1.hf (S1.triple (V1 0) (V1 1) (V1 2)) (S1.A)) :: R1 (S1.hf' (S1.triple (V1 0) (V1 1) (V1 2)) (S1.A)) (S1.hf'' (S1.foldf (S1.triple (S1.cons (S1.A) (V1 0)) (S1.nil) (V1 2)) (V1 1))) :: R1 (S1.hf'' (S1.triple (V1 0) (V1 1) (V1 2))) (S1.hfoldf (S1.triple (V1 0) (V1 1) (S1.nil)) (V1 2)) :: R1 (S1.hfoldf (V1 0) (S1.cons (V1 1) (V1 2))) (S1.hf (S1.foldf (V1 0) (V1 2)) (V1 1)) :: R1 (S1.hfoldf (V1 0) (S1.cons (V1 1) (V1 2))) (S1.hfoldf (V1 0) (V1 2)) :: R1 (S1.hf' (S1.triple (V1 0) (V1 1) (V1 2)) (S1.A)) (S1.hfoldf (S1.triple (S1.cons (S1.A) (V1 0)) (S1.nil) (V1 2)) (V1 1)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.g) => nil | (int_symb M.g) => nil | (hd_symb M.A) => nil | (int_symb M.A) => nil | (hd_symb M.B) => nil | (int_symb M.B) => nil | (hd_symb M.C) => nil | (int_symb M.C) => nil | (hd_symb M.foldf) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.foldf) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.f) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.f) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.f') => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.f') => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.triple) => nil | (int_symb M.triple) => (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.f'') => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.f'') => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* graph decomposition 2 *) Definition cs2 : list (list (@ATrs.rule s1)) := ( R1 (S1.hf' (S1.triple (V1 0) (V1 1) (V1 2)) (S1.A)) (S1.hfoldf (S1.triple (S1.cons (S1.A) (V1 0)) (S1.nil) (V1 2)) (V1 1)) :: nil) :: ( R1 (S1.hf'' (S1.triple (V1 0) (V1 1) (V1 2))) (S1.hfoldf (S1.triple (V1 0) (V1 1) (S1.nil)) (V1 2)) :: nil) :: ( R1 (S1.hf' (S1.triple (V1 0) (V1 1) (V1 2)) (S1.A)) (S1.hf'' (S1.foldf (S1.triple (S1.cons (S1.A) (V1 0)) (S1.nil) (V1 2)) (V1 1))) :: nil) :: ( R1 (S1.hf' (S1.triple (V1 0) (V1 1) (V1 2)) (S1.B)) (S1.hf (S1.triple (V1 0) (V1 1) (V1 2)) (S1.A)) :: R1 (S1.hf (V1 0) (V1 1)) (S1.hf' (V1 0) (S1.g (V1 1))) :: nil) :: nil. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.g) => nil | (int_symb M.g) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.A) => nil | (int_symb M.A) => nil | (hd_symb M.B) => nil | (int_symb M.B) => (1%Z, Vnil) :: nil | (hd_symb M.C) => nil | (int_symb M.C) => (1%Z, Vnil) :: nil | (hd_symb M.foldf) => nil | (int_symb M.foldf) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.cons) => nil | (int_symb M.cons) => nil | (hd_symb M.f) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.f) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.f') => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.f') => nil | (hd_symb M.triple) => nil | (int_symb M.triple) => nil | (hd_symb M.f'') => nil | (int_symb M.f'') => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* graph decomposition 3 *) Definition cs3 : list (list (@ATrs.rule s1)) := ( R1 (S1.hf (V1 0) (V1 1)) (S1.hf' (V1 0) (S1.g (V1 1))) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI1.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs2; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. left. co_scc. right. PI2.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs3; subst D; subst R. dpg_unif_N_correct. left. co_scc. Qed.