| foldB#( t , s( n ) ) | → | f#( foldB( t , n ) , B ) |
| foldB#( t , s( n ) ) | → | foldB#( t , n ) |
| foldC#( t , s( n ) ) | → | f#( foldC( t , n ) , C ) |
| foldC#( t , s( n ) ) | → | foldC#( t , n ) |
| f#( t , x ) | → | f'#( t , g( x ) ) |
| f#( t , x ) | → | g#( x ) |
| f'#( triple( a , b , c ) , B ) | → | f#( triple( a , b , c ) , A ) |
| f'#( triple( a , b , c ) , A ) | → | f''#( foldB( triple( s( a ) , 0 , c ) , b ) ) |
| f'#( triple( a , b , c ) , A ) | → | foldB#( triple( s( a ) , 0 , c ) , b ) |
| f''#( triple( a , b , c ) ) | → | foldC#( triple( a , b , 0 ) , c ) |
| fold#( t , x , s( n ) ) | → | f#( fold( t , x , n ) , x ) |
| fold#( t , x , s( n ) ) | → | fold#( t , x , n ) |
The dependency pairs are split into 2 component(s).
| fold#( t , x , s( n ) ) | → | fold#( t , x , n ) |
Linear polynomial interpretation over the naturals
| [foldC (x1, x2) ] | = | x1 | |
| [triple (x1, x2, x3) ] | = | 0 | |
| [0] | = | 0 | |
| [f'' (x1) ] | = | 0 | |
| [g (x1) ] | = | x1 | |
| [C] | = | 1 | |
| [f' (x1, x2) ] | = | 0 | |
| [fold# (x1, x2, x3) ] | = | x1 | |
| [foldB (x1, x2) ] | = | 2 x1 + 3 x2 + 1 | |
| [A] | = | 0 | |
| [f (x1, x2) ] | = | 0 | |
| [s (x1) ] | = | x1 + 2 | |
| [fold (x1, x2, x3) ] | = | x1 + x2 | |
| [B] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.
| f#( t , x ) | → | f'#( t , g( x ) ) |
| f'#( triple( a , b , c ) , B ) | → | f#( triple( a , b , c ) , A ) |
| f'#( triple( a , b , c ) , A ) | → | f''#( foldB( triple( s( a ) , 0 , c ) , b ) ) |
| f''#( triple( a , b , c ) ) | → | foldC#( triple( a , b , 0 ) , c ) |
| foldC#( t , s( n ) ) | → | f#( foldC( t , n ) , C ) |
| foldC#( t , s( n ) ) | → | foldC#( t , n ) |
| f'#( triple( a , b , c ) , A ) | → | foldB#( triple( s( a ) , 0 , c ) , b ) |
| foldB#( t , s( n ) ) | → | f#( foldB( t , n ) , B ) |
| foldB#( t , s( n ) ) | → | foldB#( t , n ) |
Linear polynomial interpretation over the naturals
| [triple (x1, x2, x3) ] | = | 2 x1 | |
| [foldC (x1, x2) ] | = | 2 x1 | |
| [f''# (x1) ] | = | 2 x1 | |
| [foldC# (x1, x2) ] | = | 2 x1 | |
| [0] | = | 0 | |
| [f'' (x1) ] | = | 2 x1 | |
| [f# (x1, x2) ] | = | x1 | |
| [f'# (x1, x2) ] | = | x1 | |
| [g (x1) ] | = | 0 | |
| [C] | = | 0 | |
| [f' (x1, x2) ] | = | x1 | |
| [foldB# (x1, x2) ] | = | 3 x1 + 2 x2 | |
| [foldB (x1, x2) ] | = | 2 x1 | |
| [A] | = | 0 | |
| [f (x1, x2) ] | = | x1 | |
| [s (x1) ] | = | x1 + 2 | |
| [fold (x1, x2, x3) ] | = | x1 + 3 | |
| [B] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| f#( t , x ) | → | f'#( t , g( x ) ) |
| f'#( triple( a , b , c ) , B ) | → | f#( triple( a , b , c ) , A ) |
| f'#( triple( a , b , c ) , A ) | → | f''#( foldB( triple( s( a ) , 0 , c ) , b ) ) |
| f''#( triple( a , b , c ) ) | → | foldC#( triple( a , b , 0 ) , c ) |
| foldC#( t , s( n ) ) | → | f#( foldC( t , n ) , C ) |
| foldC#( t , s( n ) ) | → | foldC#( t , n ) |
| f'#( triple( a , b , c ) , A ) | → | foldB#( triple( s( a ) , 0 , c ) , b ) |
The dependency pairs are split into 1 component(s).
| f'#( triple( a , b , c ) , B ) | → | f#( triple( a , b , c ) , A ) |
| f#( t , x ) | → | f'#( t , g( x ) ) |
| f'#( triple( a , b , c ) , A ) | → | f''#( foldB( triple( s( a ) , 0 , c ) , b ) ) |
| f''#( triple( a , b , c ) ) | → | foldC#( triple( a , b , 0 ) , c ) |
| foldC#( t , s( n ) ) | → | f#( foldC( t , n ) , C ) |
| foldC#( t , s( n ) ) | → | foldC#( t , n ) |
Linear polynomial interpretation over the naturals
| [triple (x1, x2, x3) ] | = | x1 + x2 | |
| [foldC (x1, x2) ] | = | x1 + x2 | |
| [f''# (x1) ] | = | 2 x1 + 3 | |
| [foldC# (x1, x2) ] | = | 2 x1 + 2 x2 + 3 | |
| [0] | = | 0 | |
| [f'' (x1) ] | = | x1 | |
| [f# (x1, x2) ] | = | 2 x1 + 3 x2 | |
| [f'# (x1, x2) ] | = | 2 x1 + 3 x2 | |
| [g (x1) ] | = | x1 | |
| [C] | = | 3 | |
| [f' (x1, x2) ] | = | x1 + 3 | |
| [foldB (x1, x2) ] | = | x1 + x2 + 1 | |
| [A] | = | 2 | |
| [f (x1, x2) ] | = | x1 + 3 | |
| [s (x1) ] | = | x1 + 3 | |
| [fold (x1, x2, x3) ] | = | x1 + 3 x2 | |
| [B] | = | 3 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| f#( t , x ) | → | f'#( t , g( x ) ) |
| f''#( triple( a , b , c ) ) | → | foldC#( triple( a , b , 0 ) , c ) |
| foldC#( t , s( n ) ) | → | f#( foldC( t , n ) , C ) |
The dependency pairs are split into 0 component(s).