+#( 0( x ) , 0( y ) ) | → | 0#( +( x , y ) ) |
+#( 0( x ) , 0( y ) ) | → | +#( x , y ) |
+#( 0( x ) , 1( y ) ) | → | +#( x , y ) |
+#( 1( x ) , 0( y ) ) | → | +#( x , y ) |
+#( 1( x ) , 1( y ) ) | → | 0#( +( +( x , y ) , 1( # ) ) ) |
+#( 1( x ) , 1( y ) ) | → | +#( +( x , y ) , 1( # ) ) |
+#( 1( x ) , 1( y ) ) | → | +#( x , y ) |
+#( x , +( y , z ) ) | → | +#( +( x , y ) , z ) |
+#( x , +( y , z ) ) | → | +#( x , y ) |
-#( 0( x ) , 0( y ) ) | → | 0#( -( x , y ) ) |
-#( 0( x ) , 0( y ) ) | → | -#( x , y ) |
-#( 0( x ) , 1( y ) ) | → | -#( -( x , y ) , 1( # ) ) |
-#( 0( x ) , 1( y ) ) | → | -#( x , y ) |
-#( 1( x ) , 0( y ) ) | → | -#( x , y ) |
-#( 1( x ) , 1( y ) ) | → | 0#( -( x , y ) ) |
-#( 1( x ) , 1( y ) ) | → | -#( x , y ) |
ge#( 0( x ) , 0( y ) ) | → | ge#( x , y ) |
ge#( 0( x ) , 1( y ) ) | → | not#( ge( y , x ) ) |
ge#( 0( x ) , 1( y ) ) | → | ge#( y , x ) |
ge#( 1( x ) , 0( y ) ) | → | ge#( x , y ) |
ge#( 1( x ) , 1( y ) ) | → | ge#( x , y ) |
ge#( # , 0( x ) ) | → | ge#( # , x ) |
min#( n( x , y , z ) ) | → | min#( y ) |
max#( n( x , y , z ) ) | → | max#( z ) |
bs#( n( x , y , z ) ) | → | and#( and( ge( x , max( y ) ) , ge( min( z ) , x ) ) , and( bs( y ) , bs( z ) ) ) |
bs#( n( x , y , z ) ) | → | and#( ge( x , max( y ) ) , ge( min( z ) , x ) ) |
bs#( n( x , y , z ) ) | → | ge#( x , max( y ) ) |
bs#( n( x , y , z ) ) | → | max#( y ) |
bs#( n( x , y , z ) ) | → | ge#( min( z ) , x ) |
bs#( n( x , y , z ) ) | → | min#( z ) |
bs#( n( x , y , z ) ) | → | and#( bs( y ) , bs( z ) ) |
bs#( n( x , y , z ) ) | → | bs#( y ) |
bs#( n( x , y , z ) ) | → | bs#( z ) |
size#( n( x , y , z ) ) | → | +#( +( size( x ) , size( y ) ) , 1( # ) ) |
size#( n( x , y , z ) ) | → | +#( size( x ) , size( y ) ) |
size#( n( x , y , z ) ) | → | size#( x ) |
size#( n( x , y , z ) ) | → | size#( y ) |
wb#( n( x , y , z ) ) | → | and#( if( ge( size( y ) , size( z ) ) , ge( 1( # ) , -( size( y ) , size( z ) ) ) , ge( 1( # ) , -( size( z ) , size( y ) ) ) ) , and( wb( y ) , wb( z ) ) ) |
wb#( n( x , y , z ) ) | → | if#( ge( size( y ) , size( z ) ) , ge( 1( # ) , -( size( y ) , size( z ) ) ) , ge( 1( # ) , -( size( z ) , size( y ) ) ) ) |
wb#( n( x , y , z ) ) | → | ge#( size( y ) , size( z ) ) |
wb#( n( x , y , z ) ) | → | size#( y ) |
wb#( n( x , y , z ) ) | → | size#( z ) |
wb#( n( x , y , z ) ) | → | ge#( 1( # ) , -( size( y ) , size( z ) ) ) |
wb#( n( x , y , z ) ) | → | -#( size( y ) , size( z ) ) |
wb#( n( x , y , z ) ) | → | size#( y ) |
wb#( n( x , y , z ) ) | → | size#( z ) |
wb#( n( x , y , z ) ) | → | ge#( 1( # ) , -( size( z ) , size( y ) ) ) |
wb#( n( x , y , z ) ) | → | -#( size( z ) , size( y ) ) |
wb#( n( x , y , z ) ) | → | size#( z ) |
wb#( n( x , y , z ) ) | → | size#( y ) |
wb#( n( x , y , z ) ) | → | and#( wb( y ) , wb( z ) ) |
wb#( n( x , y , z ) ) | → | wb#( y ) |
wb#( n( x , y , z ) ) | → | wb#( z ) |
The dependency pairs are split into 9 component(s).
wb#( n( x , y , z ) ) | → | wb#( z ) |
wb#( n( x , y , z ) ) | → | wb#( y ) |
Linear polynomial interpretation over the naturals
[val (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | x1 + 2 x2 + x3 | |
[#] | = | 0 | |
[wb (x1) ] | = | 2 x1 + 2 | |
[n (x1, x2, x3) ] | = | 3 x1 + 3 x2 + 2 x3 + 3 | |
[size (x1) ] | = | x1 | |
[1 (x1) ] | = | 2 | |
[wb# (x1) ] | = | 2 x1 | |
[ge (x1, x2) ] | = | 1 | |
[max (x1) ] | = | x1 | |
[true] | = | 1 | |
[and (x1, x2) ] | = | 2 x1 | |
[false] | = | 0 | |
[+ (x1, x2) ] | = | x1 + x2 | |
[- (x1, x2) ] | = | x1 + 2 x2 | |
[l (x1) ] | = | x1 + 2 | |
[min (x1) ] | = | 3 x1 | |
[0 (x1) ] | = | 0 | |
[bs (x1) ] | = | 3 x1 | |
[not (x1) ] | = | 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
size#( n( x , y , z ) ) | → | size#( y ) |
size#( n( x , y , z ) ) | → | size#( x ) |
Linear polynomial interpretation over the naturals
[val (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | x1 + 2 x2 | |
[#] | = | 0 | |
[wb (x1) ] | = | 1 | |
[n (x1, x2, x3) ] | = | 3 x1 + 2 x2 + 2 x3 + 3 | |
[size (x1) ] | = | 2 x1 + 2 | |
[1 (x1) ] | = | 2 | |
[ge (x1, x2) ] | = | 0 | |
[max (x1) ] | = | x1 | |
[true] | = | 0 | |
[and (x1, x2) ] | = | 2 x1 | |
[size# (x1) ] | = | 2 x1 | |
[false] | = | 0 | |
[+ (x1, x2) ] | = | x1 + x2 | |
[- (x1, x2) ] | = | 2 x1 | |
[l (x1) ] | = | x1 + 3 | |
[min (x1) ] | = | 3 x1 | |
[0 (x1) ] | = | 2 | |
[bs (x1) ] | = | 3 x1 + 3 | |
[not (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
+#( 0( x ) , 1( y ) ) | → | +#( x , y ) |
+#( 0( x ) , 0( y ) ) | → | +#( x , y ) |
+#( 1( x ) , 0( y ) ) | → | +#( x , y ) |
+#( 1( x ) , 1( y ) ) | → | +#( +( x , y ) , 1( # ) ) |
+#( 1( x ) , 1( y ) ) | → | +#( x , y ) |
+#( x , +( y , z ) ) | → | +#( +( x , y ) , z ) |
+#( x , +( y , z ) ) | → | +#( x , y ) |
Linear polynomial interpretation over the naturals
[val (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[#] | = | 0 | |
[wb (x1) ] | = | 0 | |
[n (x1, x2, x3) ] | = | x1 + x2 + 2 x3 + 3 | |
[size (x1) ] | = | 2 x1 + 2 | |
[1 (x1) ] | = | x1 + 1 | |
[+# (x1, x2) ] | = | 2 x1 | |
[ge (x1, x2) ] | = | 0 | |
[max (x1) ] | = | 2 x1 | |
[true] | = | 0 | |
[and (x1, x2) ] | = | 2 x1 | |
[false] | = | 0 | |
[+ (x1, x2) ] | = | x1 + x2 | |
[- (x1, x2) ] | = | x1 | |
[l (x1) ] | = | x1 + 3 | |
[min (x1) ] | = | 2 x1 | |
[0 (x1) ] | = | x1 + 1 | |
[bs (x1) ] | = | 0 | |
[not (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
+#( 1( x ) , 1( y ) ) | → | +#( +( x , y ) , 1( # ) ) |
+#( x , +( y , z ) ) | → | +#( +( x , y ) , z ) |
+#( x , +( y , z ) ) | → | +#( x , y ) |
The dependency pairs are split into 2 component(s).
+#( x , +( y , z ) ) | → | +#( x , y ) |
+#( x , +( y , z ) ) | → | +#( +( x , y ) , z ) |
Linear polynomial interpretation over the naturals
[val (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | x1 + x2 | |
[#] | = | 0 | |
[wb (x1) ] | = | 2 x1 + 1 | |
[n (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 2 x3 + 1 | |
[size (x1) ] | = | 3 x1 | |
[1 (x1) ] | = | 0 | |
[+# (x1, x2) ] | = | x1 | |
[ge (x1, x2) ] | = | 0 | |
[max (x1) ] | = | x1 | |
[true] | = | 0 | |
[and (x1, x2) ] | = | x1 | |
[false] | = | 0 | |
[+ (x1, x2) ] | = | x1 + 2 x2 + 1 | |
[- (x1, x2) ] | = | x1 + 1 | |
[l (x1) ] | = | x1 | |
[min (x1) ] | = | x1 | |
[0 (x1) ] | = | 1 | |
[bs (x1) ] | = | 1 | |
[not (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
+#( 1( x ) , 1( y ) ) | → | +#( +( x , y ) , 1( # ) ) |
Linear polynomial interpretation over the naturals
[val (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[#] | = | 0 | |
[wb (x1) ] | = | 1 | |
[n (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 2 x3 + 3 | |
[size (x1) ] | = | 2 x1 | |
[1 (x1) ] | = | x1 + 2 | |
[+# (x1, x2) ] | = | x1 + 2 x2 | |
[ge (x1, x2) ] | = | 0 | |
[max (x1) ] | = | x1 | |
[true] | = | 0 | |
[and (x1, x2) ] | = | 2 x1 | |
[false] | = | 0 | |
[+ (x1, x2) ] | = | x1 + 2 x2 | |
[- (x1, x2) ] | = | x1 | |
[l (x1) ] | = | x1 + 1 | |
[min (x1) ] | = | 3 x1 | |
[0 (x1) ] | = | x1 + 2 | |
[bs (x1) ] | = | 3 | |
[not (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
-#( 0( x ) , 1( y ) ) | → | -#( -( x , y ) , 1( # ) ) |
-#( 0( x ) , 1( y ) ) | → | -#( x , y ) |
-#( 0( x ) , 0( y ) ) | → | -#( x , y ) |
-#( 1( x ) , 0( y ) ) | → | -#( x , y ) |
-#( 1( x ) , 1( y ) ) | → | -#( x , y ) |
Linear polynomial interpretation over the naturals
[val (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[#] | = | 0 | |
[wb (x1) ] | = | 2 | |
[n (x1, x2, x3) ] | = | x1 + 2 x2 + 2 x3 + 2 | |
[size (x1) ] | = | 2 x1 + 1 | |
[1 (x1) ] | = | x1 + 2 | |
[-# (x1, x2) ] | = | 2 x1 | |
[ge (x1, x2) ] | = | 0 | |
[max (x1) ] | = | x1 | |
[true] | = | 0 | |
[and (x1, x2) ] | = | 2 x1 + 1 | |
[false] | = | 0 | |
[+ (x1, x2) ] | = | x1 + x2 | |
[- (x1, x2) ] | = | x1 | |
[l (x1) ] | = | x1 + 2 | |
[min (x1) ] | = | 3 x1 | |
[0 (x1) ] | = | x1 + 2 | |
[bs (x1) ] | = | 2 x1 | |
[not (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
bs#( n( x , y , z ) ) | → | bs#( z ) |
bs#( n( x , y , z ) ) | → | bs#( y ) |
Linear polynomial interpretation over the naturals
[val (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | x1 + 2 x2 + x3 | |
[#] | = | 0 | |
[wb (x1) ] | = | 2 x1 + 2 | |
[n (x1, x2, x3) ] | = | 3 x1 + 3 x2 + 2 x3 + 3 | |
[size (x1) ] | = | x1 | |
[1 (x1) ] | = | 2 | |
[bs# (x1) ] | = | 2 x1 | |
[ge (x1, x2) ] | = | 1 | |
[max (x1) ] | = | x1 | |
[true] | = | 1 | |
[and (x1, x2) ] | = | 2 x1 | |
[false] | = | 0 | |
[+ (x1, x2) ] | = | x1 + x2 | |
[- (x1, x2) ] | = | x1 + 2 x2 | |
[l (x1) ] | = | x1 + 2 | |
[min (x1) ] | = | 3 x1 | |
[0 (x1) ] | = | 0 | |
[bs (x1) ] | = | 3 x1 | |
[not (x1) ] | = | 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
ge#( 0( x ) , 1( y ) ) | → | ge#( y , x ) |
ge#( 0( x ) , 0( y ) ) | → | ge#( x , y ) |
ge#( 1( x ) , 0( y ) ) | → | ge#( x , y ) |
ge#( 1( x ) , 1( y ) ) | → | ge#( x , y ) |
Linear polynomial interpretation over the naturals
[val (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[#] | = | 0 | |
[wb (x1) ] | = | 1 | |
[n (x1, x2, x3) ] | = | x1 + 2 x2 + 2 x3 + 3 | |
[size (x1) ] | = | 2 x1 + 1 | |
[1 (x1) ] | = | x1 + 1 | |
[ge (x1, x2) ] | = | 0 | |
[max (x1) ] | = | x1 | |
[true] | = | 0 | |
[and (x1, x2) ] | = | 2 x1 | |
[false] | = | 0 | |
[+ (x1, x2) ] | = | x1 + 2 x2 | |
[- (x1, x2) ] | = | x1 | |
[l (x1) ] | = | x1 | |
[min (x1) ] | = | 3 x1 | |
[0 (x1) ] | = | x1 + 1 | |
[ge# (x1, x2) ] | = | 3 x1 + 3 x2 | |
[bs (x1) ] | = | 3 | |
[not (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
ge#( # , 0( x ) ) | → | ge#( # , x ) |
Linear polynomial interpretation over the naturals
[val (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[#] | = | 0 | |
[wb (x1) ] | = | 0 | |
[n (x1, x2, x3) ] | = | 3 x1 + 2 x2 + 2 x3 + 2 | |
[size (x1) ] | = | 2 x1 | |
[1 (x1) ] | = | x1 + 1 | |
[ge (x1, x2) ] | = | 0 | |
[max (x1) ] | = | 3 x1 | |
[true] | = | 0 | |
[and (x1, x2) ] | = | 2 x1 + x2 | |
[false] | = | 0 | |
[+ (x1, x2) ] | = | x1 + 2 x2 | |
[- (x1, x2) ] | = | x1 | |
[l (x1) ] | = | x1 + 1 | |
[min (x1) ] | = | 2 x1 | |
[0 (x1) ] | = | x1 + 1 | |
[ge# (x1, x2) ] | = | 2 x1 | |
[bs (x1) ] | = | x1 | |
[not (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
min#( n( x , y , z ) ) | → | min#( y ) |
Linear polynomial interpretation over the naturals
[val (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | 2 x1 + x2 | |
[#] | = | 0 | |
[wb (x1) ] | = | 2 x1 + 2 | |
[n (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 2 x3 + 3 | |
[size (x1) ] | = | x1 | |
[1 (x1) ] | = | x1 + 1 | |
[ge (x1, x2) ] | = | x1 | |
[min# (x1) ] | = | 3 x1 | |
[max (x1) ] | = | 3 x1 + 1 | |
[true] | = | 0 | |
[and (x1, x2) ] | = | x1 + 1 | |
[false] | = | 0 | |
[+ (x1, x2) ] | = | x1 + x2 | |
[- (x1, x2) ] | = | x1 | |
[l (x1) ] | = | x1 + 3 | |
[min (x1) ] | = | 2 x1 | |
[0 (x1) ] | = | x1 + 1 | |
[bs (x1) ] | = | 2 x1 + 2 | |
[not (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
max#( n( x , y , z ) ) | → | max#( z ) |
Linear polynomial interpretation over the naturals
[val (x1) ] | = | x1 | |
[if (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[#] | = | 0 | |
[wb (x1) ] | = | 0 | |
[n (x1, x2, x3) ] | = | x1 + x2 + 3 x3 + 1 | |
[size (x1) ] | = | 0 | |
[1 (x1) ] | = | 0 | |
[ge (x1, x2) ] | = | 0 | |
[max (x1) ] | = | 3 x1 | |
[true] | = | 0 | |
[and (x1, x2) ] | = | 2 x1 | |
[false] | = | 0 | |
[+ (x1, x2) ] | = | x1 + 2 x2 | |
[- (x1, x2) ] | = | 2 x1 | |
[l (x1) ] | = | x1 | |
[min (x1) ] | = | x1 | |
[0 (x1) ] | = | 0 | |
[max# (x1) ] | = | 2 x1 | |
[bs (x1) ] | = | 0 | |
[not (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.