Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _back_slash__3 : symb | _div__2 : symb | _dot__1 : symb | e : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._back_slash__3 => 2 | M._div__2 => 2 | M._dot__1 => 2 | M.e => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _back_slash__3 x2 x1 := F0 M._back_slash__3 (Vcons x2 (Vcons x1 Vnil)). Definition _div__2 x2 x1 := F0 M._div__2 (Vcons x2 (Vcons x1 Vnil)). Definition _dot__1 x2 x1 := F0 M._dot__1 (Vcons x2 (Vcons x1 Vnil)). Definition e := F0 M.e Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0._back_slash__3 (V0 0) (V0 0)) S0.e :: R0 (S0._div__2 (V0 0) (V0 0)) S0.e :: R0 (S0._dot__1 S0.e (V0 0)) (V0 0) :: R0 (S0._dot__1 (V0 0) S0.e) (V0 0) :: R0 (S0._back_slash__3 S0.e (V0 0)) (V0 0) :: R0 (S0._div__2 (V0 0) S0.e) (V0 0) :: R0 (S0._dot__1 (V0 0) (S0._back_slash__3 (V0 0) (V0 2))) (V0 2) :: R0 (S0._dot__1 (S0._div__2 (V0 0) (V0 1)) (V0 1)) (V0 0) :: R0 (S0._back_slash__3 (V0 0) (S0._dot__1 (V0 0) (V0 2))) (V0 2) :: R0 (S0._div__2 (S0._dot__1 (V0 0) (V0 1)) (V0 1)) (V0 0) :: R0 (S0._div__2 (V0 0) (S0._back_slash__3 (V0 1) (V0 0))) (V0 1) :: R0 (S0._back_slash__3 (S0._div__2 (V0 0) (V0 1)) (V0 0)) (V0 1) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_back_slash__3 x2 x1 := F1 (hd_symb s1_p M._back_slash__3) (Vcons x2 (Vcons x1 Vnil)). Definition _back_slash__3 x2 x1 := F1 (int_symb s1_p M._back_slash__3) (Vcons x2 (Vcons x1 Vnil)). Definition h_div__2 x2 x1 := F1 (hd_symb s1_p M._div__2) (Vcons x2 (Vcons x1 Vnil)). Definition _div__2 x2 x1 := F1 (int_symb s1_p M._div__2) (Vcons x2 (Vcons x1 Vnil)). Definition h_dot__1 x2 x1 := F1 (hd_symb s1_p M._dot__1) (Vcons x2 (Vcons x1 Vnil)). Definition _dot__1 x2 x1 := F1 (int_symb s1_p M._dot__1) (Vcons x2 (Vcons x1 Vnil)). Definition he := F1 (hd_symb s1_p M.e) Vnil. Definition e := F1 (int_symb s1_p M.e) Vnil. End S1. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. termination_trivial. Qed.