| sort#( cons( x , y ) ) | → | insert#( x , sort( y ) ) |
| sort#( cons( x , y ) ) | → | sort#( y ) |
| insert#( x , cons( v , w ) ) | → | choose#( x , cons( v , w ) , x , v ) |
| choose#( x , cons( v , w ) , 0 , s( z ) ) | → | insert#( x , w ) |
| choose#( x , cons( v , w ) , s( y ) , s( z ) ) | → | choose#( x , cons( v , w ) , y , z ) |
The dependency pairs are split into 2 component(s).
| sort#( cons( x , y ) ) | → | sort#( y ) |
Linear polynomial interpretation over the naturals
| [sort# (x1) ] | = | x1 | |
| [insert (x1, x2) ] | = | x1 + 1 | |
| [0] | = | 0 | |
| [s (x1) ] | = | 0 | |
| [sort (x1) ] | = | 2 x1 | |
| [nil] | = | 0 | |
| [cons (x1, x2) ] | = | x1 + 1 | |
| [choose (x1, ..., x4) ] | = | x1 + 1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.
| choose#( x , cons( v , w ) , 0 , s( z ) ) | → | insert#( x , w ) |
| insert#( x , cons( v , w ) ) | → | choose#( x , cons( v , w ) , x , v ) |
| choose#( x , cons( v , w ) , s( y ) , s( z ) ) | → | choose#( x , cons( v , w ) , y , z ) |
Linear polynomial interpretation over the naturals
| [insert (x1, x2) ] | = | x1 + 2 | |
| [insert# (x1, x2) ] | = | 2 x1 + 2 | |
| [choose# (x1, ..., x4) ] | = | 2 x1 | |
| [0] | = | 0 | |
| [s (x1) ] | = | 0 | |
| [sort (x1) ] | = | x1 | |
| [nil] | = | 0 | |
| [cons (x1, x2) ] | = | x1 + 2 | |
| [choose (x1, ..., x4) ] | = | x1 + 2 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| choose#( x , cons( v , w ) , s( y ) , s( z ) ) | → | choose#( x , cons( v , w ) , y , z ) |
Linear polynomial interpretation over the naturals
| [insert (x1, x2) ] | = | 3 | |
| [choose# (x1, ..., x4) ] | = | x1 | |
| [s (x1) ] | = | x1 + 1 | |
| [0] | = | 0 | |
| [sort (x1) ] | = | 3 | |
| [nil] | = | 0 | |
| [cons (x1, x2) ] | = | 0 | |
| [choose (x1, ..., x4) ] | = | 3 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.