Require terminaison. Require Relations. Require term. Require List. Require equational_theory. Require rpo_extension. Require equational_extension. Require closure_extension. Require term_extension. Require dp. Require Inclusion. Require or_ext_generated. Require ZArith. Require ring_extention. Require Zwf. Require Inverse_Image. Require matrix. Require more_list_extention. Import List. Import ZArith. Set Implicit Arguments. Module algebra. Module F <:term.Signature. Inductive symb : Set := (* id__plus_ *) | id__plus_ : symb (* id_7 *) | id_7 : symb (* id_3 *) | id_3 : symb (* id_1 *) | id_1 : symb (* id_9 *) | id_9 : symb (* id_5 *) | id_5 : symb (* id_0 *) | id_0 : symb (* id_8 *) | id_8 : symb (* id_4 *) | id_4 : symb (* id_2 *) | id_2 : symb (* id_c *) | id_c : symb (* id_6 *) | id_6 : symb . Definition symb_eq_bool (f1 f2:symb) : bool := match f1,f2 with | id__plus_,id__plus_ => true | id_7,id_7 => true | id_3,id_3 => true | id_1,id_1 => true | id_9,id_9 => true | id_5,id_5 => true | id_0,id_0 => true | id_8,id_8 => true | id_4,id_4 => true | id_2,id_2 => true | id_c,id_c => true | id_6,id_6 => true | _,_ => false end. (* Proof of decidability of equality over symb *) Definition symb_eq_bool_ok(f1 f2:symb) : match symb_eq_bool f1 f2 with | true => f1 = f2 | false => f1 <> f2 end. Proof. intros f1 f2. refine match f1 as u1,f2 as u2 return match symb_eq_bool u1 u2 return Prop with | true => u1 = u2 | false => u1 <> u2 end with | id__plus_,id__plus_ => refl_equal _ | id_7,id_7 => refl_equal _ | id_3,id_3 => refl_equal _ | id_1,id_1 => refl_equal _ | id_9,id_9 => refl_equal _ | id_5,id_5 => refl_equal _ | id_0,id_0 => refl_equal _ | id_8,id_8 => refl_equal _ | id_4,id_4 => refl_equal _ | id_2,id_2 => refl_equal _ | id_c,id_c => refl_equal _ | id_6,id_6 => refl_equal _ | _,_ => _ end;intros abs;discriminate. Defined. Definition arity (f:symb) := match f with | id__plus_ => term.Free 2 | id_7 => term.Free 0 | id_3 => term.Free 0 | id_1 => term.Free 0 | id_9 => term.Free 0 | id_5 => term.Free 0 | id_0 => term.Free 0 | id_8 => term.Free 0 | id_4 => term.Free 0 | id_2 => term.Free 0 | id_c => term.Free 2 | id_6 => term.Free 0 end. Definition symb_order (f1 f2:symb) : bool := match f1,f2 with | id__plus_,id__plus_ => true | id__plus_,id_7 => false | id__plus_,id_3 => false | id__plus_,id_1 => false | id__plus_,id_9 => false | id__plus_,id_5 => false | id__plus_,id_0 => false | id__plus_,id_8 => false | id__plus_,id_4 => false | id__plus_,id_2 => false | id__plus_,id_c => false | id__plus_,id_6 => false | id_7,id__plus_ => true | id_7,id_7 => true | id_7,id_3 => false | id_7,id_1 => false | id_7,id_9 => false | id_7,id_5 => false | id_7,id_0 => false | id_7,id_8 => false | id_7,id_4 => false | id_7,id_2 => false | id_7,id_c => false | id_7,id_6 => false | id_3,id__plus_ => true | id_3,id_7 => true | id_3,id_3 => true | id_3,id_1 => false | id_3,id_9 => false | id_3,id_5 => false | id_3,id_0 => false | id_3,id_8 => false | id_3,id_4 => false | id_3,id_2 => false | id_3,id_c => false | id_3,id_6 => false | id_1,id__plus_ => true | id_1,id_7 => true | id_1,id_3 => true | id_1,id_1 => true | id_1,id_9 => false | id_1,id_5 => false | id_1,id_0 => false | id_1,id_8 => false | id_1,id_4 => false | id_1,id_2 => false | id_1,id_c => false | id_1,id_6 => false | id_9,id__plus_ => true | id_9,id_7 => true | id_9,id_3 => true | id_9,id_1 => true | id_9,id_9 => true | id_9,id_5 => false | id_9,id_0 => false | id_9,id_8 => false | id_9,id_4 => false | id_9,id_2 => false | id_9,id_c => false | id_9,id_6 => false | id_5,id__plus_ => true | id_5,id_7 => true | id_5,id_3 => true | id_5,id_1 => true | id_5,id_9 => true | id_5,id_5 => true | id_5,id_0 => false | id_5,id_8 => false | id_5,id_4 => false | id_5,id_2 => false | id_5,id_c => false | id_5,id_6 => false | id_0,id__plus_ => true | id_0,id_7 => true | id_0,id_3 => true | id_0,id_1 => true | id_0,id_9 => true | id_0,id_5 => true | id_0,id_0 => true | id_0,id_8 => false | id_0,id_4 => false | id_0,id_2 => false | id_0,id_c => false | id_0,id_6 => false | id_8,id__plus_ => true | id_8,id_7 => true | id_8,id_3 => true | id_8,id_1 => true | id_8,id_9 => true | id_8,id_5 => true | id_8,id_0 => true | id_8,id_8 => true | id_8,id_4 => false | id_8,id_2 => false | id_8,id_c => false | id_8,id_6 => false | id_4,id__plus_ => true | id_4,id_7 => true | id_4,id_3 => true | id_4,id_1 => true | id_4,id_9 => true | id_4,id_5 => true | id_4,id_0 => true | id_4,id_8 => true | id_4,id_4 => true | id_4,id_2 => false | id_4,id_c => false | id_4,id_6 => false | id_2,id__plus_ => true | id_2,id_7 => true | id_2,id_3 => true | id_2,id_1 => true | id_2,id_9 => true | id_2,id_5 => true | id_2,id_0 => true | id_2,id_8 => true | id_2,id_4 => true | id_2,id_2 => true | id_2,id_c => false | id_2,id_6 => false | id_c,id__plus_ => true | id_c,id_7 => true | id_c,id_3 => true | id_c,id_1 => true | id_c,id_9 => true | id_c,id_5 => true | id_c,id_0 => true | id_c,id_8 => true | id_c,id_4 => true | id_c,id_2 => true | id_c,id_c => true | id_c,id_6 => false | id_6,id__plus_ => true | id_6,id_7 => true | id_6,id_3 => true | id_6,id_1 => true | id_6,id_9 => true | id_6,id_5 => true | id_6,id_0 => true | id_6,id_8 => true | id_6,id_4 => true | id_6,id_2 => true | id_6,id_c => true | id_6,id_6 => true end. Module Symb. Definition A := symb. Definition eq_A := @eq A. Definition eq_proof : equivalence A eq_A. Proof. constructor. red ;reflexivity . red ;intros ;transitivity y ;assumption. red ;intros ;symmetry ;assumption. Defined. Add Relation A eq_A reflexivity proved by (@equiv_refl _ _ eq_proof) symmetry proved by (@equiv_sym _ _ eq_proof) transitivity proved by (@equiv_trans _ _ eq_proof) as EQA . Definition eq_bool := symb_eq_bool. Definition eq_bool_ok := symb_eq_bool_ok. End Symb. Export Symb. End F. Module Alg := term.Make'(F)(term_extension.IntVars). Module Alg_ext := term_extension.Make(Alg). Module EQT := equational_theory.Make(Alg). Module EQT_ext := equational_extension.Make(EQT). End algebra. Module R_xml_0_deep_rew. Inductive R_xml_0_rules : algebra.Alg.term ->algebra.Alg.term ->Prop := (* +(0,0) -> 0 *) | R_xml_0_rule_0 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_0 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* +(0,1) -> 1 *) | R_xml_0_rule_1 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_1 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (* +(0,2) -> 2 *) | R_xml_0_rule_2 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_2 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (* +(0,3) -> 3 *) | R_xml_0_rule_3 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_3 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (* +(0,4) -> 4 *) | R_xml_0_rule_4 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_4 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (* +(0,5) -> 5 *) | R_xml_0_rule_5 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_5 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (* +(0,6) -> 6 *) | R_xml_0_rule_6 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_6 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (* +(0,7) -> 7 *) | R_xml_0_rule_7 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_7 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (* +(0,8) -> 8 *) | R_xml_0_rule_8 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_8 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)) (* +(0,9) -> 9 *) | R_xml_0_rule_9 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_9 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)) (* +(1,0) -> 1 *) | R_xml_0_rule_10 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_1 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* +(1,1) -> 2 *) | R_xml_0_rule_11 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_2 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (* +(1,2) -> 3 *) | R_xml_0_rule_12 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_3 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (* +(1,3) -> 4 *) | R_xml_0_rule_13 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_4 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (* +(1,4) -> 5 *) | R_xml_0_rule_14 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_5 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (* +(1,5) -> 6 *) | R_xml_0_rule_15 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_6 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (* +(1,6) -> 7 *) | R_xml_0_rule_16 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_7 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (* +(1,7) -> 8 *) | R_xml_0_rule_17 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_8 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (* +(1,8) -> 9 *) | R_xml_0_rule_18 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_9 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)) (* +(1,9) -> c(1,0) *) | R_xml_0_rule_19 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)) (* +(2,0) -> 2 *) | R_xml_0_rule_20 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_2 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* +(2,1) -> 3 *) | R_xml_0_rule_21 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_3 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (* +(2,2) -> 4 *) | R_xml_0_rule_22 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_4 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (* +(2,3) -> 5 *) | R_xml_0_rule_23 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_5 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (* +(2,4) -> 6 *) | R_xml_0_rule_24 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_6 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (* +(2,5) -> 7 *) | R_xml_0_rule_25 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_7 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (* +(2,6) -> 8 *) | R_xml_0_rule_26 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_8 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (* +(2,7) -> 9 *) | R_xml_0_rule_27 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_9 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (* +(2,8) -> c(1,0) *) | R_xml_0_rule_28 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)) (* +(2,9) -> c(1,1) *) | R_xml_0_rule_29 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)) (* +(3,0) -> 3 *) | R_xml_0_rule_30 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_3 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* +(3,1) -> 4 *) | R_xml_0_rule_31 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_4 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (* +(3,2) -> 5 *) | R_xml_0_rule_32 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_5 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (* +(3,3) -> 6 *) | R_xml_0_rule_33 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_6 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (* +(3,4) -> 7 *) | R_xml_0_rule_34 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_7 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (* +(3,5) -> 8 *) | R_xml_0_rule_35 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_8 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (* +(3,6) -> 9 *) | R_xml_0_rule_36 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_9 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (* +(3,7) -> c(1,0) *) | R_xml_0_rule_37 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (* +(3,8) -> c(1,1) *) | R_xml_0_rule_38 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)) (* +(3,9) -> c(1,2) *) | R_xml_0_rule_39 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)) (* +(4,0) -> 4 *) | R_xml_0_rule_40 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_4 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* +(4,1) -> 5 *) | R_xml_0_rule_41 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_5 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (* +(4,2) -> 6 *) | R_xml_0_rule_42 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_6 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (* +(4,3) -> 7 *) | R_xml_0_rule_43 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_7 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (* +(4,4) -> 8 *) | R_xml_0_rule_44 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_8 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (* +(4,5) -> 9 *) | R_xml_0_rule_45 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_9 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (* +(4,6) -> c(1,0) *) | R_xml_0_rule_46 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (* +(4,7) -> c(1,1) *) | R_xml_0_rule_47 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (* +(4,8) -> c(1,2) *) | R_xml_0_rule_48 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)) (* +(4,9) -> c(1,3) *) | R_xml_0_rule_49 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)) (* +(5,0) -> 5 *) | R_xml_0_rule_50 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_5 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* +(5,1) -> 6 *) | R_xml_0_rule_51 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_6 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (* +(5,2) -> 7 *) | R_xml_0_rule_52 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_7 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (* +(5,3) -> 8 *) | R_xml_0_rule_53 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_8 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (* +(5,4) -> 9 *) | R_xml_0_rule_54 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_9 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (* +(5,5) -> c(1,0) *) | R_xml_0_rule_55 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (* +(5,6) -> c(1,1) *) | R_xml_0_rule_56 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (* +(5,7) -> c(1,2) *) | R_xml_0_rule_57 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (* +(5,8) -> c(1,3) *) | R_xml_0_rule_58 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)) (* +(5,9) -> c(1,4) *) | R_xml_0_rule_59 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)) (* +(6,0) -> 6 *) | R_xml_0_rule_60 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_6 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* +(6,1) -> 7 *) | R_xml_0_rule_61 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_7 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (* +(6,2) -> 8 *) | R_xml_0_rule_62 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_8 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (* +(6,3) -> 9 *) | R_xml_0_rule_63 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_9 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (* +(6,4) -> c(1,0) *) | R_xml_0_rule_64 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (* +(6,5) -> c(1,1) *) | R_xml_0_rule_65 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (* +(6,6) -> c(1,2) *) | R_xml_0_rule_66 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (* +(6,7) -> c(1,3) *) | R_xml_0_rule_67 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (* +(6,8) -> c(1,4) *) | R_xml_0_rule_68 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)) (* +(6,9) -> c(1,5) *) | R_xml_0_rule_69 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)) (* +(7,0) -> 7 *) | R_xml_0_rule_70 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_7 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* +(7,1) -> 8 *) | R_xml_0_rule_71 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_8 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (* +(7,2) -> 9 *) | R_xml_0_rule_72 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_9 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (* +(7,3) -> c(1,0) *) | R_xml_0_rule_73 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (* +(7,4) -> c(1,1) *) | R_xml_0_rule_74 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (* +(7,5) -> c(1,2) *) | R_xml_0_rule_75 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (* +(7,6) -> c(1,3) *) | R_xml_0_rule_76 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (* +(7,7) -> c(1,4) *) | R_xml_0_rule_77 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (* +(7,8) -> c(1,5) *) | R_xml_0_rule_78 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)) (* +(7,9) -> c(1,6) *) | R_xml_0_rule_79 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)) (* +(8,0) -> 8 *) | R_xml_0_rule_80 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_8 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* +(8,1) -> 9 *) | R_xml_0_rule_81 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_9 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (* +(8,2) -> c(1,0) *) | R_xml_0_rule_82 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (* +(8,3) -> c(1,1) *) | R_xml_0_rule_83 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (* +(8,4) -> c(1,2) *) | R_xml_0_rule_84 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (* +(8,5) -> c(1,3) *) | R_xml_0_rule_85 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (* +(8,6) -> c(1,4) *) | R_xml_0_rule_86 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (* +(8,7) -> c(1,5) *) | R_xml_0_rule_87 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (* +(8,8) -> c(1,6) *) | R_xml_0_rule_88 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)) (* +(8,9) -> c(1,7) *) | R_xml_0_rule_89 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)) (* +(9,0) -> 9 *) | R_xml_0_rule_90 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_9 nil) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* +(9,1) -> c(1,0) *) | R_xml_0_rule_91 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (* +(9,2) -> c(1,1) *) | R_xml_0_rule_92 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (* +(9,3) -> c(1,2) *) | R_xml_0_rule_93 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (* +(9,4) -> c(1,3) *) | R_xml_0_rule_94 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (* +(9,5) -> c(1,4) *) | R_xml_0_rule_95 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (* +(9,6) -> c(1,5) *) | R_xml_0_rule_96 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (* +(9,7) -> c(1,6) *) | R_xml_0_rule_97 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (* +(9,8) -> c(1,7) *) | R_xml_0_rule_98 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)) (* +(9,9) -> c(1,8) *) | R_xml_0_rule_99 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)) (* +(x_,c(y_,z_)) -> c(y_,+(x_,z_)) *) | R_xml_0_rule_100 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Var 2):: (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Var 1)::(algebra.Alg.Var 3)::nil))::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Var 1):: (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Var 2):: (algebra.Alg.Var 3)::nil))::nil)) (* +(c(x_,y_),z_) -> c(x_,+(y_,z_)) *) | R_xml_0_rule_101 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Var 1):: (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Var 2)::(algebra.Alg.Var 3)::nil))::nil)) (algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Var 1)::(algebra.Alg.Var 2)::nil)):: (algebra.Alg.Var 3)::nil)) (* c(0,x_) -> x_ *) | R_xml_0_rule_102 : R_xml_0_rules (algebra.Alg.Var 1) (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Var 1)::nil)) (* c(x_,c(y_,z_)) -> c(+(x_,y_),z_) *) | R_xml_0_rule_103 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::nil))::(algebra.Alg.Var 3)::nil)) (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Var 1):: (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Var 2):: (algebra.Alg.Var 3)::nil))::nil)) . Definition R_xml_0_rule_as_list_0 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)), (algebra.Alg.Term algebra.F.id_0 nil))::nil. Definition R_xml_0_rule_as_list_1 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)), (algebra.Alg.Term algebra.F.id_1 nil))::R_xml_0_rule_as_list_0. Definition R_xml_0_rule_as_list_2 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)), (algebra.Alg.Term algebra.F.id_2 nil))::R_xml_0_rule_as_list_1. Definition R_xml_0_rule_as_list_3 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)), (algebra.Alg.Term algebra.F.id_3 nil))::R_xml_0_rule_as_list_2. Definition R_xml_0_rule_as_list_4 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)), (algebra.Alg.Term algebra.F.id_4 nil))::R_xml_0_rule_as_list_3. Definition R_xml_0_rule_as_list_5 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)), (algebra.Alg.Term algebra.F.id_5 nil))::R_xml_0_rule_as_list_4. Definition R_xml_0_rule_as_list_6 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)), (algebra.Alg.Term algebra.F.id_6 nil))::R_xml_0_rule_as_list_5. Definition R_xml_0_rule_as_list_7 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)), (algebra.Alg.Term algebra.F.id_7 nil))::R_xml_0_rule_as_list_6. Definition R_xml_0_rule_as_list_8 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)), (algebra.Alg.Term algebra.F.id_8 nil))::R_xml_0_rule_as_list_7. Definition R_xml_0_rule_as_list_9 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)), (algebra.Alg.Term algebra.F.id_9 nil))::R_xml_0_rule_as_list_8. Definition R_xml_0_rule_as_list_10 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)), (algebra.Alg.Term algebra.F.id_1 nil))::R_xml_0_rule_as_list_9. Definition R_xml_0_rule_as_list_11 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)), (algebra.Alg.Term algebra.F.id_2 nil))::R_xml_0_rule_as_list_10. Definition R_xml_0_rule_as_list_12 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)), (algebra.Alg.Term algebra.F.id_3 nil))::R_xml_0_rule_as_list_11. Definition R_xml_0_rule_as_list_13 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)), (algebra.Alg.Term algebra.F.id_4 nil))::R_xml_0_rule_as_list_12. Definition R_xml_0_rule_as_list_14 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)), (algebra.Alg.Term algebra.F.id_5 nil))::R_xml_0_rule_as_list_13. Definition R_xml_0_rule_as_list_15 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)), (algebra.Alg.Term algebra.F.id_6 nil))::R_xml_0_rule_as_list_14. Definition R_xml_0_rule_as_list_16 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)), (algebra.Alg.Term algebra.F.id_7 nil))::R_xml_0_rule_as_list_15. Definition R_xml_0_rule_as_list_17 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)), (algebra.Alg.Term algebra.F.id_8 nil))::R_xml_0_rule_as_list_16. Definition R_xml_0_rule_as_list_18 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)), (algebra.Alg.Term algebra.F.id_9 nil))::R_xml_0_rule_as_list_17. Definition R_xml_0_rule_as_list_19 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)))::R_xml_0_rule_as_list_18. Definition R_xml_0_rule_as_list_20 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)), (algebra.Alg.Term algebra.F.id_2 nil))::R_xml_0_rule_as_list_19. Definition R_xml_0_rule_as_list_21 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)), (algebra.Alg.Term algebra.F.id_3 nil))::R_xml_0_rule_as_list_20. Definition R_xml_0_rule_as_list_22 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)), (algebra.Alg.Term algebra.F.id_4 nil))::R_xml_0_rule_as_list_21. Definition R_xml_0_rule_as_list_23 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)), (algebra.Alg.Term algebra.F.id_5 nil))::R_xml_0_rule_as_list_22. Definition R_xml_0_rule_as_list_24 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)), (algebra.Alg.Term algebra.F.id_6 nil))::R_xml_0_rule_as_list_23. Definition R_xml_0_rule_as_list_25 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)), (algebra.Alg.Term algebra.F.id_7 nil))::R_xml_0_rule_as_list_24. Definition R_xml_0_rule_as_list_26 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)), (algebra.Alg.Term algebra.F.id_8 nil))::R_xml_0_rule_as_list_25. Definition R_xml_0_rule_as_list_27 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)), (algebra.Alg.Term algebra.F.id_9 nil))::R_xml_0_rule_as_list_26. Definition R_xml_0_rule_as_list_28 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)))::R_xml_0_rule_as_list_27. Definition R_xml_0_rule_as_list_29 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_2 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)))::R_xml_0_rule_as_list_28. Definition R_xml_0_rule_as_list_30 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)), (algebra.Alg.Term algebra.F.id_3 nil))::R_xml_0_rule_as_list_29. Definition R_xml_0_rule_as_list_31 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)), (algebra.Alg.Term algebra.F.id_4 nil))::R_xml_0_rule_as_list_30. Definition R_xml_0_rule_as_list_32 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)), (algebra.Alg.Term algebra.F.id_5 nil))::R_xml_0_rule_as_list_31. Definition R_xml_0_rule_as_list_33 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)), (algebra.Alg.Term algebra.F.id_6 nil))::R_xml_0_rule_as_list_32. Definition R_xml_0_rule_as_list_34 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)), (algebra.Alg.Term algebra.F.id_7 nil))::R_xml_0_rule_as_list_33. Definition R_xml_0_rule_as_list_35 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)), (algebra.Alg.Term algebra.F.id_8 nil))::R_xml_0_rule_as_list_34. Definition R_xml_0_rule_as_list_36 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)), (algebra.Alg.Term algebra.F.id_9 nil))::R_xml_0_rule_as_list_35. Definition R_xml_0_rule_as_list_37 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)))::R_xml_0_rule_as_list_36. Definition R_xml_0_rule_as_list_38 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)))::R_xml_0_rule_as_list_37. Definition R_xml_0_rule_as_list_39 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_3 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)))::R_xml_0_rule_as_list_38. Definition R_xml_0_rule_as_list_40 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)), (algebra.Alg.Term algebra.F.id_4 nil))::R_xml_0_rule_as_list_39. Definition R_xml_0_rule_as_list_41 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)), (algebra.Alg.Term algebra.F.id_5 nil))::R_xml_0_rule_as_list_40. Definition R_xml_0_rule_as_list_42 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)), (algebra.Alg.Term algebra.F.id_6 nil))::R_xml_0_rule_as_list_41. Definition R_xml_0_rule_as_list_43 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)), (algebra.Alg.Term algebra.F.id_7 nil))::R_xml_0_rule_as_list_42. Definition R_xml_0_rule_as_list_44 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)), (algebra.Alg.Term algebra.F.id_8 nil))::R_xml_0_rule_as_list_43. Definition R_xml_0_rule_as_list_45 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)), (algebra.Alg.Term algebra.F.id_9 nil))::R_xml_0_rule_as_list_44. Definition R_xml_0_rule_as_list_46 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)))::R_xml_0_rule_as_list_45. Definition R_xml_0_rule_as_list_47 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)))::R_xml_0_rule_as_list_46. Definition R_xml_0_rule_as_list_48 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)))::R_xml_0_rule_as_list_47. Definition R_xml_0_rule_as_list_49 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_4 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_3 nil)::nil)))::R_xml_0_rule_as_list_48. Definition R_xml_0_rule_as_list_50 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)), (algebra.Alg.Term algebra.F.id_5 nil))::R_xml_0_rule_as_list_49. Definition R_xml_0_rule_as_list_51 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)), (algebra.Alg.Term algebra.F.id_6 nil))::R_xml_0_rule_as_list_50. Definition R_xml_0_rule_as_list_52 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)), (algebra.Alg.Term algebra.F.id_7 nil))::R_xml_0_rule_as_list_51. Definition R_xml_0_rule_as_list_53 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)), (algebra.Alg.Term algebra.F.id_8 nil))::R_xml_0_rule_as_list_52. Definition R_xml_0_rule_as_list_54 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)), (algebra.Alg.Term algebra.F.id_9 nil))::R_xml_0_rule_as_list_53. Definition R_xml_0_rule_as_list_55 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)))::R_xml_0_rule_as_list_54. Definition R_xml_0_rule_as_list_56 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)))::R_xml_0_rule_as_list_55. Definition R_xml_0_rule_as_list_57 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)))::R_xml_0_rule_as_list_56. Definition R_xml_0_rule_as_list_58 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_3 nil)::nil)))::R_xml_0_rule_as_list_57. Definition R_xml_0_rule_as_list_59 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_5 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_4 nil)::nil)))::R_xml_0_rule_as_list_58. Definition R_xml_0_rule_as_list_60 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)), (algebra.Alg.Term algebra.F.id_6 nil))::R_xml_0_rule_as_list_59. Definition R_xml_0_rule_as_list_61 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)), (algebra.Alg.Term algebra.F.id_7 nil))::R_xml_0_rule_as_list_60. Definition R_xml_0_rule_as_list_62 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)), (algebra.Alg.Term algebra.F.id_8 nil))::R_xml_0_rule_as_list_61. Definition R_xml_0_rule_as_list_63 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)), (algebra.Alg.Term algebra.F.id_9 nil))::R_xml_0_rule_as_list_62. Definition R_xml_0_rule_as_list_64 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)))::R_xml_0_rule_as_list_63. Definition R_xml_0_rule_as_list_65 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)))::R_xml_0_rule_as_list_64. Definition R_xml_0_rule_as_list_66 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)))::R_xml_0_rule_as_list_65. Definition R_xml_0_rule_as_list_67 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_3 nil)::nil)))::R_xml_0_rule_as_list_66. Definition R_xml_0_rule_as_list_68 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_4 nil)::nil)))::R_xml_0_rule_as_list_67. Definition R_xml_0_rule_as_list_69 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_6 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_5 nil)::nil)))::R_xml_0_rule_as_list_68. Definition R_xml_0_rule_as_list_70 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)), (algebra.Alg.Term algebra.F.id_7 nil))::R_xml_0_rule_as_list_69. Definition R_xml_0_rule_as_list_71 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)), (algebra.Alg.Term algebra.F.id_8 nil))::R_xml_0_rule_as_list_70. Definition R_xml_0_rule_as_list_72 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)), (algebra.Alg.Term algebra.F.id_9 nil))::R_xml_0_rule_as_list_71. Definition R_xml_0_rule_as_list_73 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)))::R_xml_0_rule_as_list_72. Definition R_xml_0_rule_as_list_74 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)))::R_xml_0_rule_as_list_73. Definition R_xml_0_rule_as_list_75 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)))::R_xml_0_rule_as_list_74. Definition R_xml_0_rule_as_list_76 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_3 nil)::nil)))::R_xml_0_rule_as_list_75. Definition R_xml_0_rule_as_list_77 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_4 nil)::nil)))::R_xml_0_rule_as_list_76. Definition R_xml_0_rule_as_list_78 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_5 nil)::nil)))::R_xml_0_rule_as_list_77. Definition R_xml_0_rule_as_list_79 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_7 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_6 nil)::nil)))::R_xml_0_rule_as_list_78. Definition R_xml_0_rule_as_list_80 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)), (algebra.Alg.Term algebra.F.id_8 nil))::R_xml_0_rule_as_list_79. Definition R_xml_0_rule_as_list_81 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)), (algebra.Alg.Term algebra.F.id_9 nil))::R_xml_0_rule_as_list_80. Definition R_xml_0_rule_as_list_82 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)))::R_xml_0_rule_as_list_81. Definition R_xml_0_rule_as_list_83 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)))::R_xml_0_rule_as_list_82. Definition R_xml_0_rule_as_list_84 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)))::R_xml_0_rule_as_list_83. Definition R_xml_0_rule_as_list_85 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_3 nil)::nil)))::R_xml_0_rule_as_list_84. Definition R_xml_0_rule_as_list_86 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_4 nil)::nil)))::R_xml_0_rule_as_list_85. Definition R_xml_0_rule_as_list_87 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_5 nil)::nil)))::R_xml_0_rule_as_list_86. Definition R_xml_0_rule_as_list_88 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_6 nil)::nil)))::R_xml_0_rule_as_list_87. Definition R_xml_0_rule_as_list_89 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_8 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_7 nil)::nil)))::R_xml_0_rule_as_list_88. Definition R_xml_0_rule_as_list_90 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)), (algebra.Alg.Term algebra.F.id_9 nil))::R_xml_0_rule_as_list_89. Definition R_xml_0_rule_as_list_91 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)))::R_xml_0_rule_as_list_90. Definition R_xml_0_rule_as_list_92 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)))::R_xml_0_rule_as_list_91. Definition R_xml_0_rule_as_list_93 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)))::R_xml_0_rule_as_list_92. Definition R_xml_0_rule_as_list_94 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_3 nil)::nil)))::R_xml_0_rule_as_list_93. Definition R_xml_0_rule_as_list_95 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_4 nil)::nil)))::R_xml_0_rule_as_list_94. Definition R_xml_0_rule_as_list_96 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_5 nil)::nil)))::R_xml_0_rule_as_list_95. Definition R_xml_0_rule_as_list_97 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_6 nil)::nil)))::R_xml_0_rule_as_list_96. Definition R_xml_0_rule_as_list_98 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_7 nil)::nil)))::R_xml_0_rule_as_list_97. Definition R_xml_0_rule_as_list_99 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_9 nil)::(algebra.Alg.Term algebra.F.id_9 nil)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_8 nil)::nil)))::R_xml_0_rule_as_list_98. Definition R_xml_0_rule_as_list_100 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Var 1):: (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Var 2):: (algebra.Alg.Var 3)::nil))::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Var 2)::(algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Var 1):: (algebra.Alg.Var 3)::nil))::nil)))::R_xml_0_rule_as_list_99. Definition R_xml_0_rule_as_list_101 := ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Var 1)::(algebra.Alg.Var 2)::nil)):: (algebra.Alg.Var 3)::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Var 1)::(algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Var 2):: (algebra.Alg.Var 3)::nil))::nil)))::R_xml_0_rule_as_list_100. Definition R_xml_0_rule_as_list_102 := ((algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_0 nil):: (algebra.Alg.Var 1)::nil)),(algebra.Alg.Var 1)):: R_xml_0_rule_as_list_101. Definition R_xml_0_rule_as_list_103 := ((algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Var 1)::(algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Var 2)::(algebra.Alg.Var 3)::nil))::nil)), (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id__plus_ ((algebra.Alg.Var 1)::(algebra.Alg.Var 2)::nil)):: (algebra.Alg.Var 3)::nil)))::R_xml_0_rule_as_list_102. Definition R_xml_0_rule_as_list := R_xml_0_rule_as_list_103. Lemma R_xml_0_rules_included : forall l r, R_xml_0_rules r l <-> In (l,r) R_xml_0_rule_as_list. Proof. intros l r. constructor. intros H. case H;clear H; (apply (more_list.mem_impl_in (@eq (algebra.Alg.term*algebra.Alg.term))); [tauto|idtac]); match goal with | |- _ _ _ ?t ?l => let u := fresh "u" in (generalize (more_list.mem_bool_ok _ _ algebra.Alg_ext.eq_term_term_bool_ok t l); set (u:=more_list.mem_bool algebra.Alg_ext.eq_term_term_bool t l) in *; vm_compute in u|-;unfold u in *;clear u;intros H;refine H) end . intros H. vm_compute in H|-. rewrite <- or_ext_generated.or25_equiv in H|-. case H;clear H;intros H. injection H;intros ;subst;constructor 104. injection H;intros ;subst;constructor 103. injection H;intros ;subst;constructor 102. injection H;intros ;subst;constructor 101. injection H;intros ;subst;constructor 100. injection H;intros ;subst;constructor 99. injection H;intros ;subst;constructor 98. injection H;intros ;subst;constructor 97. injection H;intros ;subst;constructor 96. injection H;intros ;subst;constructor 95. injection H;intros ;subst;constructor 94. injection H;intros ;subst;constructor 93. injection H;intros ;subst;constructor 92. injection H;intros ;subst;constructor 91. injection H;intros ;subst;constructor 90. injection H;intros ;subst;constructor 89. injection H;intros ;subst;constructor 88. injection H;intros ;subst;constructor 87. injection H;intros ;subst;constructor 86. injection H;intros ;subst;constructor 85. injection H;intros ;subst;constructor 84. injection H;intros ;subst;constructor 83. injection H;intros ;subst;constructor 82. injection H;intros ;subst;constructor 81. rewrite <- or_ext_generated.or25_equiv in H|-. case H;clear H;intros H. injection H;intros ;subst;constructor 80. injection H;intros ;subst;constructor 79. injection H;intros ;subst;constructor 78. injection H;intros ;subst;constructor 77. injection H;intros ;subst;constructor 76. injection H;intros ;subst;constructor 75. injection H;intros ;subst;constructor 74. injection H;intros ;subst;constructor 73. injection H;intros ;subst;constructor 72. injection H;intros ;subst;constructor 71. injection H;intros ;subst;constructor 70. injection H;intros ;subst;constructor 69. injection H;intros ;subst;constructor 68. injection H;intros ;subst;constructor 67. injection H;intros ;subst;constructor 66. injection H;intros ;subst;constructor 65. injection H;intros ;subst;constructor 64. injection H;intros ;subst;constructor 63. injection H;intros ;subst;constructor 62. injection H;intros ;subst;constructor 61. injection H;intros ;subst;constructor 60. injection H;intros ;subst;constructor 59. injection H;intros ;subst;constructor 58. injection H;intros ;subst;constructor 57. rewrite <- or_ext_generated.or25_equiv in H|-. case H;clear H;intros H. injection H;intros ;subst;constructor 56. injection H;intros ;subst;constructor 55. injection H;intros ;subst;constructor 54. injection H;intros ;subst;constructor 53. injection H;intros ;subst;constructor 52. injection H;intros ;subst;constructor 51. injection H;intros ;subst;constructor 50. injection H;intros ;subst;constructor 49. injection H;intros ;subst;constructor 48. injection H;intros ;subst;constructor 47. injection H;intros ;subst;constructor 46. injection H;intros ;subst;constructor 45. injection H;intros ;subst;constructor 44. injection H;intros ;subst;constructor 43. injection H;intros ;subst;constructor 42. injection H;intros ;subst;constructor 41. injection H;intros ;subst;constructor 40. injection H;intros ;subst;constructor 39. injection H;intros ;subst;constructor 38. injection H;intros ;subst;constructor 37. injection H;intros ;subst;constructor 36. injection H;intros ;subst;constructor 35. injection H;intros ;subst;constructor 34. injection H;intros ;subst;constructor 33. rewrite <- or_ext_generated.or25_equiv in H|-. case H;clear H;intros H. injection H;intros ;subst;constructor 32. injection H;intros ;subst;constructor 31. injection H;intros ;subst;constructor 30. injection H;intros ;subst;constructor 29. injection H;intros ;subst;constructor 28. injection H;intros ;subst;constructor 27. injection H;intros ;subst;constructor 26. injection H;intros ;subst;constructor 25. injection H;intros ;subst;constructor 24. injection H;intros ;subst;constructor 23. injection H;intros ;subst;constructor 22. injection H;intros ;subst;constructor 21. injection H;intros ;subst;constructor 20. injection H;intros ;subst;constructor 19. injection H;intros ;subst;constructor 18. injection H;intros ;subst;constructor 17. injection H;intros ;subst;constructor 16. injection H;intros ;subst;constructor 15. injection H;intros ;subst;constructor 14. injection H;intros ;subst;constructor 13. injection H;intros ;subst;constructor 12. injection H;intros ;subst;constructor 11. injection H;intros ;subst;constructor 10. injection H;intros ;subst;constructor 9. rewrite <- or_ext_generated.or9_equiv in H|-. case H;clear H;intros H. injection H;intros ;subst;constructor 8. injection H;intros ;subst;constructor 7. injection H;intros ;subst;constructor 6. injection H;intros ;subst;constructor 5. injection H;intros ;subst;constructor 4. injection H;intros ;subst;constructor 3. injection H;intros ;subst;constructor 2. injection H;intros ;subst;constructor 1. elim H. Qed. Lemma R_xml_0_non_var : forall x t, ~R_xml_0_rules t (algebra.EQT.T.Var x). Proof. intros x t H. inversion H. Qed. Lemma R_xml_0_reg : forall s t, (R_xml_0_rules s t) -> forall x, In x (algebra.Alg.var_list s) ->In x (algebra.Alg.var_list t). Proof. intros s t H. inversion H;intros x Hx; (apply (more_list.mem_impl_in (@eq algebra.Alg.variable));[tauto|idtac]); apply (more_list.in_impl_mem (@eq algebra.Alg.variable)) in Hx; vm_compute in Hx|-*;tauto. Qed. Inductive and_10 (x5 x6 x7 x8 x9 x10 x11 x12 x13 x14:Prop) : Prop := | conj_10 : x5->x6->x7->x8->x9->x10->x11->x12->x13->x14-> and_10 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . Lemma are_constuctors_of_R_xml_0 : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> and_10 (t = (algebra.Alg.Term algebra.F.id_7 nil) -> t' = (algebra.Alg.Term algebra.F.id_7 nil)) (t = (algebra.Alg.Term algebra.F.id_3 nil) -> t' = (algebra.Alg.Term algebra.F.id_3 nil)) (t = (algebra.Alg.Term algebra.F.id_1 nil) -> t' = (algebra.Alg.Term algebra.F.id_1 nil)) (t = (algebra.Alg.Term algebra.F.id_9 nil) -> t' = (algebra.Alg.Term algebra.F.id_9 nil)) (t = (algebra.Alg.Term algebra.F.id_5 nil) -> t' = (algebra.Alg.Term algebra.F.id_5 nil)) (t = (algebra.Alg.Term algebra.F.id_0 nil) -> t' = (algebra.Alg.Term algebra.F.id_0 nil)) (t = (algebra.Alg.Term algebra.F.id_8 nil) -> t' = (algebra.Alg.Term algebra.F.id_8 nil)) (t = (algebra.Alg.Term algebra.F.id_4 nil) -> t' = (algebra.Alg.Term algebra.F.id_4 nil)) (t = (algebra.Alg.Term algebra.F.id_2 nil) -> t' = (algebra.Alg.Term algebra.F.id_2 nil)) (t = (algebra.Alg.Term algebra.F.id_6 nil) -> t' = (algebra.Alg.Term algebra.F.id_6 nil)). Proof. intros t t' H. induction H as [|y IH z z_to_y] using closure_extension.refl_trans_clos_ind2. constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. inversion z_to_y as [t1 t2 H H0 H1|f l1 l2 H0 H H2];clear z_to_y;subst. inversion H as [t1 t2 sigma H2 H1 H0];clear H IH;subst;inversion H2; clear ;constructor;try (intros until 0 );clear ;intros abs; discriminate abs. destruct IH as [H_id_7 H_id_3 H_id_1 H_id_9 H_id_5 H_id_0 H_id_8 H_id_4 H_id_2 H_id_6]. constructor. clear H_id_3 H_id_1 H_id_9 H_id_5 H_id_0 H_id_8 H_id_4 H_id_2 H_id_6; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_7 H_id_1 H_id_9 H_id_5 H_id_0 H_id_8 H_id_4 H_id_2 H_id_6; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_7 H_id_3 H_id_9 H_id_5 H_id_0 H_id_8 H_id_4 H_id_2 H_id_6; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_7 H_id_3 H_id_1 H_id_5 H_id_0 H_id_8 H_id_4 H_id_2 H_id_6; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_7 H_id_3 H_id_1 H_id_9 H_id_0 H_id_8 H_id_4 H_id_2 H_id_6; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_7 H_id_3 H_id_1 H_id_9 H_id_5 H_id_8 H_id_4 H_id_2 H_id_6; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_7 H_id_3 H_id_1 H_id_9 H_id_5 H_id_0 H_id_4 H_id_2 H_id_6; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_7 H_id_3 H_id_1 H_id_9 H_id_5 H_id_0 H_id_8 H_id_2 H_id_6; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_7 H_id_3 H_id_1 H_id_9 H_id_5 H_id_0 H_id_8 H_id_4 H_id_6; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_7 H_id_3 H_id_1 H_id_9 H_id_5 H_id_0 H_id_8 H_id_4 H_id_2; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). Qed. Lemma id_7_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_7 nil) -> t' = (algebra.Alg.Term algebra.F.id_7 nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_3_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_3 nil) -> t' = (algebra.Alg.Term algebra.F.id_3 nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_1_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_1 nil) -> t' = (algebra.Alg.Term algebra.F.id_1 nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_9_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_9 nil) -> t' = (algebra.Alg.Term algebra.F.id_9 nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_5_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_5 nil) -> t' = (algebra.Alg.Term algebra.F.id_5 nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_0_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_0 nil) -> t' = (algebra.Alg.Term algebra.F.id_0 nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_8_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_8 nil) -> t' = (algebra.Alg.Term algebra.F.id_8 nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_4_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_4 nil) -> t' = (algebra.Alg.Term algebra.F.id_4 nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_2_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_2 nil) -> t' = (algebra.Alg.Term algebra.F.id_2 nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_6_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_6 nil) -> t' = (algebra.Alg.Term algebra.F.id_6 nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Ltac impossible_star_reduction_R_xml_0 := match goal with | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_7 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_7_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_3 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_3_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_1 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_1_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_9 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_9_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_5 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_5_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_0 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_0_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_8 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_8_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_4 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_4_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_2 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_2_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_6 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_6_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) end . Ltac simplify_star_reduction_R_xml_0 := match goal with | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_7 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_7_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_3 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_3_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_1 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_1_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_9 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_9_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_5 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_5_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_0 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_0_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_8 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_8_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_4 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_4_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_2 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_2_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_6 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_6_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) end . End R_xml_0_deep_rew. Module InterpGen := interp.Interp(algebra.EQT). Module ddp := dp.MakeDP(algebra.EQT). Module SymbType. Definition A := algebra.Alg.F.Symb.A. End SymbType. Module Symb_more_list := more_list_extention.Make(SymbType)(algebra.Alg.F.Symb). Module SymbSet := list_set.Make(algebra.F.Symb). Module Interp. Section S. Require Import interp. Hypothesis A : Type. Hypothesis Ale Alt Aeq : A -> A -> Prop. Hypothesis Aop : interp.ordering_pair Aeq Alt Ale. Hypothesis A0 : A. Notation Local "a <= b" := (Ale a b). Hypothesis P_id__plus_ : A ->A ->A. Hypothesis P_id_7 : A. Hypothesis P_id_3 : A. Hypothesis P_id_1 : A. Hypothesis P_id_9 : A. Hypothesis P_id_5 : A. Hypothesis P_id_0 : A. Hypothesis P_id_8 : A. Hypothesis P_id_4 : A. Hypothesis P_id_2 : A. Hypothesis P_id_c : A ->A ->A. Hypothesis P_id_6 : A. Hypothesis P_id__plus__monotonic : forall x8 x6 x5 x7, (A0 <= x8)/\ (x8 <= x7) -> (A0 <= x6)/\ (x6 <= x5) ->P_id__plus_ x6 x8 <= P_id__plus_ x5 x7. Hypothesis P_id_c_monotonic : forall x8 x6 x5 x7, (A0 <= x8)/\ (x8 <= x7) -> (A0 <= x6)/\ (x6 <= x5) ->P_id_c x6 x8 <= P_id_c x5 x7. Hypothesis P_id__plus__bounded : forall x6 x5, (A0 <= x5) ->(A0 <= x6) ->A0 <= P_id__plus_ x6 x5. Hypothesis P_id_7_bounded : A0 <= P_id_7 . Hypothesis P_id_3_bounded : A0 <= P_id_3 . Hypothesis P_id_1_bounded : A0 <= P_id_1 . Hypothesis P_id_9_bounded : A0 <= P_id_9 . Hypothesis P_id_5_bounded : A0 <= P_id_5 . Hypothesis P_id_0_bounded : A0 <= P_id_0 . Hypothesis P_id_8_bounded : A0 <= P_id_8 . Hypothesis P_id_4_bounded : A0 <= P_id_4 . Hypothesis P_id_2_bounded : A0 <= P_id_2 . Hypothesis P_id_c_bounded : forall x6 x5, (A0 <= x5) ->(A0 <= x6) ->A0 <= P_id_c x6 x5. Hypothesis P_id_6_bounded : A0 <= P_id_6 . Fixpoint measure t { struct t } := match t with | (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) => P_id__plus_ (measure x6) (measure x5) | (algebra.Alg.Term algebra.F.id_7 nil) => P_id_7 | (algebra.Alg.Term algebra.F.id_3 nil) => P_id_3 | (algebra.Alg.Term algebra.F.id_1 nil) => P_id_1 | (algebra.Alg.Term algebra.F.id_9 nil) => P_id_9 | (algebra.Alg.Term algebra.F.id_5 nil) => P_id_5 | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id_8 nil) => P_id_8 | (algebra.Alg.Term algebra.F.id_4 nil) => P_id_4 | (algebra.Alg.Term algebra.F.id_2 nil) => P_id_2 | (algebra.Alg.Term algebra.F.id_c (x6::x5::nil)) => P_id_c (measure x6) (measure x5) | (algebra.Alg.Term algebra.F.id_6 nil) => P_id_6 | _ => A0 end. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) => P_id__plus_ (measure x6) (measure x5) | (algebra.Alg.Term algebra.F.id_7 nil) => P_id_7 | (algebra.Alg.Term algebra.F.id_3 nil) => P_id_3 | (algebra.Alg.Term algebra.F.id_1 nil) => P_id_1 | (algebra.Alg.Term algebra.F.id_9 nil) => P_id_9 | (algebra.Alg.Term algebra.F.id_5 nil) => P_id_5 | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id_8 nil) => P_id_8 | (algebra.Alg.Term algebra.F.id_4 nil) => P_id_4 | (algebra.Alg.Term algebra.F.id_2 nil) => P_id_2 | (algebra.Alg.Term algebra.F.id_c (x6::x5::nil)) => P_id_c (measure x6) (measure x5) | (algebra.Alg.Term algebra.F.id_6 nil) => P_id_6 | _ => A0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Definition Pols f : InterpGen.Pol_type A (InterpGen.get_arity f) := match f with | algebra.F.id__plus_ => P_id__plus_ | algebra.F.id_7 => P_id_7 | algebra.F.id_3 => P_id_3 | algebra.F.id_1 => P_id_1 | algebra.F.id_9 => P_id_9 | algebra.F.id_5 => P_id_5 | algebra.F.id_0 => P_id_0 | algebra.F.id_8 => P_id_8 | algebra.F.id_4 => P_id_4 | algebra.F.id_2 => P_id_2 | algebra.F.id_c => P_id_c | algebra.F.id_6 => P_id_6 end. Lemma same_measure : forall t, measure t = InterpGen.measure A0 Pols t. Proof. fix 1 . intros [a| f l]. simpl in |-*. unfold eq_rect_r, eq_rect, sym_eq in |-*. reflexivity . refine match f with | algebra.F.id__plus_ => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_7 => match l with | nil => _ | _::_ => _ end | algebra.F.id_3 => match l with | nil => _ | _::_ => _ end | algebra.F.id_1 => match l with | nil => _ | _::_ => _ end | algebra.F.id_9 => match l with | nil => _ | _::_ => _ end | algebra.F.id_5 => match l with | nil => _ | _::_ => _ end | algebra.F.id_0 => match l with | nil => _ | _::_ => _ end | algebra.F.id_8 => match l with | nil => _ | _::_ => _ end | algebra.F.id_4 => match l with | nil => _ | _::_ => _ end | algebra.F.id_2 => match l with | nil => _ | _::_ => _ end | algebra.F.id_c => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_6 => match l with | nil => _ | _::_ => _ end end;simpl in |-*;unfold eq_rect_r, eq_rect, sym_eq in |-*; try (reflexivity );f_equal ;auto. Qed. Lemma measure_bounded : forall t, A0 <= measure t. Proof. intros t. rewrite same_measure in |-*. apply (InterpGen.measure_bounded Aop). intros f. case f. vm_compute in |-*;intros ;apply P_id__plus__bounded;assumption. vm_compute in |-*;intros ;apply P_id_7_bounded;assumption. vm_compute in |-*;intros ;apply P_id_3_bounded;assumption. vm_compute in |-*;intros ;apply P_id_1_bounded;assumption. vm_compute in |-*;intros ;apply P_id_9_bounded;assumption. vm_compute in |-*;intros ;apply P_id_5_bounded;assumption. vm_compute in |-*;intros ;apply P_id_0_bounded;assumption. vm_compute in |-*;intros ;apply P_id_8_bounded;assumption. vm_compute in |-*;intros ;apply P_id_4_bounded;assumption. vm_compute in |-*;intros ;apply P_id_2_bounded;assumption. vm_compute in |-*;intros ;apply P_id_c_bounded;assumption. vm_compute in |-*;intros ;apply P_id_6_bounded;assumption. Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Hypothesis rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. intros . do 2 (rewrite same_measure in |-*). apply InterpGen.measure_star_monotonic with (1:=Aop) (Pols:=Pols) (rules:=R_xml_0_deep_rew.R_xml_0_rules). intros f. case f. vm_compute in |-*;intros ;apply P_id__plus__monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;intros ;apply P_id_c_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). intros f. case f. vm_compute in |-*;intros ;apply P_id__plus__bounded;assumption. vm_compute in |-*;intros ;apply P_id_7_bounded;assumption. vm_compute in |-*;intros ;apply P_id_3_bounded;assumption. vm_compute in |-*;intros ;apply P_id_1_bounded;assumption. vm_compute in |-*;intros ;apply P_id_9_bounded;assumption. vm_compute in |-*;intros ;apply P_id_5_bounded;assumption. vm_compute in |-*;intros ;apply P_id_0_bounded;assumption. vm_compute in |-*;intros ;apply P_id_8_bounded;assumption. vm_compute in |-*;intros ;apply P_id_4_bounded;assumption. vm_compute in |-*;intros ;apply P_id_2_bounded;assumption. vm_compute in |-*;intros ;apply P_id_c_bounded;assumption. vm_compute in |-*;intros ;apply P_id_6_bounded;assumption. intros . do 2 (rewrite <- same_measure in |-*). apply rules_monotonic;assumption. assumption. Qed. Hypothesis P_id__plus__hat_1 : A ->A ->A. Hypothesis P_id_C : A ->A ->A. Hypothesis P_id__plus__hat_1_monotonic : forall x8 x6 x5 x7, (A0 <= x8)/\ (x8 <= x7) -> (A0 <= x6)/\ (x6 <= x5) -> P_id__plus__hat_1 x6 x8 <= P_id__plus__hat_1 x5 x7. Hypothesis P_id_C_monotonic : forall x8 x6 x5 x7, (A0 <= x8)/\ (x8 <= x7) -> (A0 <= x6)/\ (x6 <= x5) ->P_id_C x6 x8 <= P_id_C x5 x7. Definition marked_measure t := match t with | (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) => P_id__plus__hat_1 (measure x6) (measure x5) | (algebra.Alg.Term algebra.F.id_c (x6::x5::nil)) => P_id_C (measure x6) (measure x5) | _ => measure t end. Definition Marked_pols : forall f, (algebra.EQT.defined R_xml_0_deep_rew.R_xml_0_rules f) -> InterpGen.Pol_type A (InterpGen.get_arity f). Proof. intros f H. apply ddp.defined_list_complete with (1:=R_xml_0_deep_rew.R_xml_0_rules_included) in H . apply (Symb_more_list.change_in algebra.F.symb_order) in H . set (u := (Symb_more_list.qs algebra.F.symb_order (Symb_more_list.XSet.remove_red (ddp.defined_list R_xml_0_deep_rew.R_xml_0_rule_as_list)))) in * . vm_compute in u . unfold u in * . clear u . unfold more_list.mem_bool in H . match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x6 x5;apply (P_id_C x6 x5). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x6 x5;apply (P_id__plus__hat_1 x6 x5). discriminate H. Defined. Lemma same_marked_measure : forall t, marked_measure t = InterpGen.marked_measure A0 Pols Marked_pols (ddp.defined_dec _ _ R_xml_0_deep_rew.R_xml_0_rules_included) t. Proof. intros [a| f l]. simpl in |-*. unfold eq_rect_r, eq_rect, sym_eq in |-*. reflexivity . refine match f with | algebra.F.id__plus_ => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_7 => match l with | nil => _ | _::_ => _ end | algebra.F.id_3 => match l with | nil => _ | _::_ => _ end | algebra.F.id_1 => match l with | nil => _ | _::_ => _ end | algebra.F.id_9 => match l with | nil => _ | _::_ => _ end | algebra.F.id_5 => match l with | nil => _ | _::_ => _ end | algebra.F.id_0 => match l with | nil => _ | _::_ => _ end | algebra.F.id_8 => match l with | nil => _ | _::_ => _ end | algebra.F.id_4 => match l with | nil => _ | _::_ => _ end | algebra.F.id_2 => match l with | nil => _ | _::_ => _ end | algebra.F.id_c => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_6 => match l with | nil => _ | _::_ => _ end end. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . Qed. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id__plus_ (x6:: x5::nil)) => P_id__plus__hat_1 (measure x6) (measure x5) | (algebra.Alg.Term algebra.F.id_c (x6::x5::nil)) => P_id_C (measure x6) (measure x5) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. intros . do 2 (rewrite same_marked_measure in |-*). apply InterpGen.marked_measure_star_monotonic with (1:=Aop) (Pols:= Pols) (rules:=R_xml_0_deep_rew.R_xml_0_rules). clear f. intros f. case f. vm_compute in |-*;intros ;apply P_id__plus__monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;intros ;apply P_id_c_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). clear f. intros f. case f. vm_compute in |-*;intros ;apply P_id__plus__bounded;assumption. vm_compute in |-*;intros ;apply P_id_7_bounded;assumption. vm_compute in |-*;intros ;apply P_id_3_bounded;assumption. vm_compute in |-*;intros ;apply P_id_1_bounded;assumption. vm_compute in |-*;intros ;apply P_id_9_bounded;assumption. vm_compute in |-*;intros ;apply P_id_5_bounded;assumption. vm_compute in |-*;intros ;apply P_id_0_bounded;assumption. vm_compute in |-*;intros ;apply P_id_8_bounded;assumption. vm_compute in |-*;intros ;apply P_id_4_bounded;assumption. vm_compute in |-*;intros ;apply P_id_2_bounded;assumption. vm_compute in |-*;intros ;apply P_id_c_bounded;assumption. vm_compute in |-*;intros ;apply P_id_6_bounded;assumption. intros . do 2 (rewrite <- same_measure in |-*). apply rules_monotonic;assumption. clear f. intros f. clear H. intros H. generalize H. apply ddp.defined_list_complete with (1:=R_xml_0_deep_rew.R_xml_0_rules_included) in H . apply (Symb_more_list.change_in algebra.F.symb_order) in H . set (u := (Symb_more_list.qs algebra.F.symb_order (Symb_more_list.XSet.remove_red (ddp.defined_list R_xml_0_deep_rew.R_xml_0_rule_as_list)))) in * . vm_compute in u . unfold u in * . clear u . unfold more_list.mem_bool in H . match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_C_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id__plus__hat_1_monotonic;assumption. discriminate H. assumption. Qed. End S. End Interp. Module InterpZ. Section S. Open Scope Z_scope. Hypothesis min_value : Z. Import ring_extention. Notation Local "'Alt'" := (Zwf.Zwf min_value). Notation Local "'Ale'" := Zle. Notation Local "'Aeq'" := (@eq Z). Notation Local "a <= b" := (Ale a b). Notation Local "a < b" := (Alt a b). Hypothesis P_id__plus_ : Z ->Z ->Z. Hypothesis P_id_7 : Z. Hypothesis P_id_3 : Z. Hypothesis P_id_1 : Z. Hypothesis P_id_9 : Z. Hypothesis P_id_5 : Z. Hypothesis P_id_0 : Z. Hypothesis P_id_8 : Z. Hypothesis P_id_4 : Z. Hypothesis P_id_2 : Z. Hypothesis P_id_c : Z ->Z ->Z. Hypothesis P_id_6 : Z. Hypothesis P_id__plus__monotonic : forall x8 x6 x5 x7, (min_value <= x8)/\ (x8 <= x7) -> (min_value <= x6)/\ (x6 <= x5) ->P_id__plus_ x6 x8 <= P_id__plus_ x5 x7. Hypothesis P_id_c_monotonic : forall x8 x6 x5 x7, (min_value <= x8)/\ (x8 <= x7) -> (min_value <= x6)/\ (x6 <= x5) ->P_id_c x6 x8 <= P_id_c x5 x7. Hypothesis P_id__plus__bounded : forall x6 x5, (min_value <= x5) ->(min_value <= x6) ->min_value <= P_id__plus_ x6 x5. Hypothesis P_id_7_bounded : min_value <= P_id_7 . Hypothesis P_id_3_bounded : min_value <= P_id_3 . Hypothesis P_id_1_bounded : min_value <= P_id_1 . Hypothesis P_id_9_bounded : min_value <= P_id_9 . Hypothesis P_id_5_bounded : min_value <= P_id_5 . Hypothesis P_id_0_bounded : min_value <= P_id_0 . Hypothesis P_id_8_bounded : min_value <= P_id_8 . Hypothesis P_id_4_bounded : min_value <= P_id_4 . Hypothesis P_id_2_bounded : min_value <= P_id_2 . Hypothesis P_id_c_bounded : forall x6 x5, (min_value <= x5) ->(min_value <= x6) ->min_value <= P_id_c x6 x5. Hypothesis P_id_6_bounded : min_value <= P_id_6 . Definition measure := Interp.measure min_value P_id__plus_ P_id_7 P_id_3 P_id_1 P_id_9 P_id_5 P_id_0 P_id_8 P_id_4 P_id_2 P_id_c P_id_6. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) => P_id__plus_ (measure x6) (measure x5) | (algebra.Alg.Term algebra.F.id_7 nil) => P_id_7 | (algebra.Alg.Term algebra.F.id_3 nil) => P_id_3 | (algebra.Alg.Term algebra.F.id_1 nil) => P_id_1 | (algebra.Alg.Term algebra.F.id_9 nil) => P_id_9 | (algebra.Alg.Term algebra.F.id_5 nil) => P_id_5 | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id_8 nil) => P_id_8 | (algebra.Alg.Term algebra.F.id_4 nil) => P_id_4 | (algebra.Alg.Term algebra.F.id_2 nil) => P_id_2 | (algebra.Alg.Term algebra.F.id_c (x6::x5::nil)) => P_id_c (measure x6) (measure x5) | (algebra.Alg.Term algebra.F.id_6 nil) => P_id_6 | _ => min_value end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, min_value <= measure t. Proof. unfold measure in |-*. apply Interp.measure_bounded with Alt Aeq; (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Hypothesis rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply Interp.measure_star_monotonic with Alt Aeq. (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). intros ;apply P_id__plus__monotonic;assumption. intros ;apply P_id_c_monotonic;assumption. intros ;apply P_id__plus__bounded;assumption. intros ;apply P_id_7_bounded;assumption. intros ;apply P_id_3_bounded;assumption. intros ;apply P_id_1_bounded;assumption. intros ;apply P_id_9_bounded;assumption. intros ;apply P_id_5_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_8_bounded;assumption. intros ;apply P_id_4_bounded;assumption. intros ;apply P_id_2_bounded;assumption. intros ;apply P_id_c_bounded;assumption. intros ;apply P_id_6_bounded;assumption. apply rules_monotonic. Qed. Hypothesis P_id__plus__hat_1 : Z ->Z ->Z. Hypothesis P_id_C : Z ->Z ->Z. Hypothesis P_id__plus__hat_1_monotonic : forall x8 x6 x5 x7, (min_value <= x8)/\ (x8 <= x7) -> (min_value <= x6)/\ (x6 <= x5) -> P_id__plus__hat_1 x6 x8 <= P_id__plus__hat_1 x5 x7. Hypothesis P_id_C_monotonic : forall x8 x6 x5 x7, (min_value <= x8)/\ (x8 <= x7) -> (min_value <= x6)/\ (x6 <= x5) ->P_id_C x6 x8 <= P_id_C x5 x7. Definition marked_measure := Interp.marked_measure min_value P_id__plus_ P_id_7 P_id_3 P_id_1 P_id_9 P_id_5 P_id_0 P_id_8 P_id_4 P_id_2 P_id_c P_id_6 P_id__plus__hat_1 P_id_C. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id__plus_ (x6:: x5::nil)) => P_id__plus__hat_1 (measure x6) (measure x5) | (algebra.Alg.Term algebra.F.id_c (x6::x5::nil)) => P_id_C (measure x6) (measure x5) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply Interp.marked_measure_star_monotonic with Alt Aeq. (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). intros ;apply P_id__plus__monotonic;assumption. intros ;apply P_id_c_monotonic;assumption. intros ;apply P_id__plus__bounded;assumption. intros ;apply P_id_7_bounded;assumption. intros ;apply P_id_3_bounded;assumption. intros ;apply P_id_1_bounded;assumption. intros ;apply P_id_9_bounded;assumption. intros ;apply P_id_5_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_8_bounded;assumption. intros ;apply P_id_4_bounded;assumption. intros ;apply P_id_2_bounded;assumption. intros ;apply P_id_c_bounded;assumption. intros ;apply P_id_6_bounded;assumption. apply rules_monotonic. intros ;apply P_id__plus__hat_1_monotonic;assumption. intros ;apply P_id_C_monotonic;assumption. Qed. End S. End InterpZ. Module WF_R_xml_0_deep_rew. Inductive DP_R_xml_0 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(1,9),c(1,0)> *) | DP_R_xml_0_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_1 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(2,8),c(1,0)> *) | DP_R_xml_0_1 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(2,9),c(1,1)> *) | DP_R_xml_0_2 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(3,7),c(1,0)> *) | DP_R_xml_0_3 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_3 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(3,8),c(1,1)> *) | DP_R_xml_0_4 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_3 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(3,9),c(1,2)> *) | DP_R_xml_0_5 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_3 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(4,6),c(1,0)> *) | DP_R_xml_0_6 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(4,7),c(1,1)> *) | DP_R_xml_0_7 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(4,8),c(1,2)> *) | DP_R_xml_0_8 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(4,9),c(1,3)> *) | DP_R_xml_0_9 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(5,5),c(1,0)> *) | DP_R_xml_0_10 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(5,6),c(1,1)> *) | DP_R_xml_0_11 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(5,7),c(1,2)> *) | DP_R_xml_0_12 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(5,8),c(1,3)> *) | DP_R_xml_0_13 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(5,9),c(1,4)> *) | DP_R_xml_0_14 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(6,4),c(1,0)> *) | DP_R_xml_0_15 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(6,5),c(1,1)> *) | DP_R_xml_0_16 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(6,6),c(1,2)> *) | DP_R_xml_0_17 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(6,7),c(1,3)> *) | DP_R_xml_0_18 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(6,8),c(1,4)> *) | DP_R_xml_0_19 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(6,9),c(1,5)> *) | DP_R_xml_0_20 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(7,3),c(1,0)> *) | DP_R_xml_0_21 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_3 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(7,4),c(1,1)> *) | DP_R_xml_0_22 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(7,5),c(1,2)> *) | DP_R_xml_0_23 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(7,6),c(1,3)> *) | DP_R_xml_0_24 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(7,7),c(1,4)> *) | DP_R_xml_0_25 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(7,8),c(1,5)> *) | DP_R_xml_0_26 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(7,9),c(1,6)> *) | DP_R_xml_0_27 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(8,2),c(1,0)> *) | DP_R_xml_0_28 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(8,3),c(1,1)> *) | DP_R_xml_0_29 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_3 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(8,4),c(1,2)> *) | DP_R_xml_0_30 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(8,5),c(1,3)> *) | DP_R_xml_0_31 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(8,6),c(1,4)> *) | DP_R_xml_0_32 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(8,7),c(1,5)> *) | DP_R_xml_0_33 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(8,8),c(1,6)> *) | DP_R_xml_0_34 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(8,9),c(1,7)> *) | DP_R_xml_0_35 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(9,1),c(1,0)> *) | DP_R_xml_0_36 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_1 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(9,2),c(1,1)> *) | DP_R_xml_0_37 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(9,3),c(1,2)> *) | DP_R_xml_0_38 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_3 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(9,4),c(1,3)> *) | DP_R_xml_0_39 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(9,5),c(1,4)> *) | DP_R_xml_0_40 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(9,6),c(1,5)> *) | DP_R_xml_0_41 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_5 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(9,7),c(1,6)> *) | DP_R_xml_0_42 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_6 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(9,8),c(1,7)> *) | DP_R_xml_0_43 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_7 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(9,9),c(1,8)> *) | DP_R_xml_0_44 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil)::(algebra.Alg.Term algebra.F.id_8 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(x_,c(y_,z_)),c(y_,+(x_,z_))> *) | DP_R_xml_0_45 : forall x2 x6 x1 x5 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_c (x2::x3::nil)) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c (x2::(algebra.Alg.Term algebra.F.id__plus_ (x1::x3::nil))::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(x_,c(y_,z_)),+(x_,z_)> *) | DP_R_xml_0_46 : forall x2 x6 x1 x5 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_c (x2::x3::nil)) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id__plus_ (x1::x3::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(c(x_,y_),z_),c(x_,+(y_,z_))> *) | DP_R_xml_0_47 : forall x2 x6 x1 x5 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_c (x1::x2::nil)) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c (x1::(algebra.Alg.Term algebra.F.id__plus_ (x2::x3::nil))::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(c(x_,y_),z_),+(y_,z_)> *) | DP_R_xml_0_48 : forall x2 x6 x1 x5 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_c (x1::x2::nil)) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id__plus_ (x2::x3::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* *) | DP_R_xml_0_49 : forall x2 x6 x1 x5 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_c (x2::x3::nil)) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id__plus_ (x1::x2::nil))::x3::nil)) (algebra.Alg.Term algebra.F.id_c (x6::x5::nil)) (* *) | DP_R_xml_0_50 : forall x2 x6 x1 x5 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_c (x2::x3::nil)) x5) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id__plus_ (x1::x2::nil)) (algebra.Alg.Term algebra.F.id_c (x6::x5::nil)) . Module ddp := dp.MakeDP(algebra.EQT). Lemma R_xml_0_dp_step_spec : forall x y, (ddp.dp_step R_xml_0_deep_rew.R_xml_0_rules x y) -> exists f, exists l1, exists l2, y = algebra.Alg.Term f l2/\ (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2)/\ (ddp.dp R_xml_0_deep_rew.R_xml_0_rules x (algebra.Alg.Term f l1)). Proof. intros x y H. induction H. inversion H. subst. destruct t0. refine ((False_ind) _ _). refine (R_xml_0_deep_rew.R_xml_0_non_var H0). simpl in H|-*. exists a. exists ((List.map) (algebra.Alg.apply_subst sigma) l). exists ((List.map) (algebra.Alg.apply_subst sigma) l). repeat (constructor). assumption. exists f. exists l2. exists l1. constructor. constructor. constructor. constructor. rewrite <- closure.rwr_list_trans_clos_one_step_list. assumption. assumption. Qed. Ltac included_dp_tac H := injection H;clear H;intros;subst; repeat (match goal with | H: closure.refl_trans_clos (closure.one_step_list _) (_::_) _ |- _=> let x := fresh "x" in let l := fresh "l" in let h1 := fresh "h" in let h2 := fresh "h" in let h3 := fresh "h" in destruct (@algebra.EQT_ext.one_step_list_star_decompose_cons _ _ _ _ H) as [x [l[h1[h2 h3]]]];clear H;subst | H: closure.refl_trans_clos (closure.one_step_list _) nil _ |- _ => rewrite (@algebra.EQT_ext.one_step_list_star_decompose_nil _ _ H) in *;clear H end );simpl; econstructor eassumption . Ltac dp_concl_tac h2 h cont_tac t := match t with | False => let h' := fresh "a" in (set (h':=t) in *;cont_tac h'; repeat ( let e := type of h in (match e with | ?t => unfold t in h|-; (case h; [abstract (clear h;intros h;injection h; clear h;intros ;subst; included_dp_tac h2)| clear h;intros h;clear t]) | ?t => unfold t in h|-;elim h end ) )) | or ?a ?b => let cont_tac h' := let h'' := fresh "a" in (set (h'':=or a h') in *;cont_tac h'') in (dp_concl_tac h2 h cont_tac b) end . Module WF_DP_R_xml_0. Inductive DP_R_xml_0_non_scc_1 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(9,9),c(1,8)> *) | DP_R_xml_0_non_scc_1_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0_non_scc_1 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_8 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_1 : forall x y, (DP_R_xml_0_non_scc_1 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_2 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(9,8),c(1,7)> *) | DP_R_xml_0_non_scc_2_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0_non_scc_2 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_7 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_2 : forall x y, (DP_R_xml_0_non_scc_2 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_3 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(9,7),c(1,6)> *) | DP_R_xml_0_non_scc_3_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0_non_scc_3 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_6 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_3 : forall x y, (DP_R_xml_0_non_scc_3 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_4 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(9,6),c(1,5)> *) | DP_R_xml_0_non_scc_4_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x5) -> DP_R_xml_0_non_scc_4 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_5 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_4 : forall x y, (DP_R_xml_0_non_scc_4 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_5 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(9,5),c(1,4)> *) | DP_R_xml_0_non_scc_5_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x5) -> DP_R_xml_0_non_scc_5 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_5 : forall x y, (DP_R_xml_0_non_scc_5 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_6 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(9,4),c(1,3)> *) | DP_R_xml_0_non_scc_6_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x5) -> DP_R_xml_0_non_scc_6 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_6 : forall x y, (DP_R_xml_0_non_scc_6 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_7 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(9,3),c(1,2)> *) | DP_R_xml_0_non_scc_7_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_3 nil) x5) -> DP_R_xml_0_non_scc_7 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_7 : forall x y, (DP_R_xml_0_non_scc_7 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_8 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(9,2),c(1,1)> *) | DP_R_xml_0_non_scc_8_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2 nil) x5) -> DP_R_xml_0_non_scc_8 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_8 : forall x y, (DP_R_xml_0_non_scc_8 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_9 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(9,1),c(1,0)> *) | DP_R_xml_0_non_scc_9_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_1 nil) x5) -> DP_R_xml_0_non_scc_9 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_9 : forall x y, (DP_R_xml_0_non_scc_9 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_10 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(8,9),c(1,7)> *) | DP_R_xml_0_non_scc_10_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0_non_scc_10 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_7 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_10 : forall x y, (DP_R_xml_0_non_scc_10 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_11 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(8,8),c(1,6)> *) | DP_R_xml_0_non_scc_11_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0_non_scc_11 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_6 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_11 : forall x y, (DP_R_xml_0_non_scc_11 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_12 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(8,7),c(1,5)> *) | DP_R_xml_0_non_scc_12_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0_non_scc_12 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_5 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_12 : forall x y, (DP_R_xml_0_non_scc_12 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_13 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(8,6),c(1,4)> *) | DP_R_xml_0_non_scc_13_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x5) -> DP_R_xml_0_non_scc_13 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_13 : forall x y, (DP_R_xml_0_non_scc_13 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_14 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(8,5),c(1,3)> *) | DP_R_xml_0_non_scc_14_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x5) -> DP_R_xml_0_non_scc_14 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_14 : forall x y, (DP_R_xml_0_non_scc_14 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_15 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(8,4),c(1,2)> *) | DP_R_xml_0_non_scc_15_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x5) -> DP_R_xml_0_non_scc_15 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_15 : forall x y, (DP_R_xml_0_non_scc_15 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_16 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(8,3),c(1,1)> *) | DP_R_xml_0_non_scc_16_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_3 nil) x5) -> DP_R_xml_0_non_scc_16 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_16 : forall x y, (DP_R_xml_0_non_scc_16 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_17 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(8,2),c(1,0)> *) | DP_R_xml_0_non_scc_17_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2 nil) x5) -> DP_R_xml_0_non_scc_17 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_17 : forall x y, (DP_R_xml_0_non_scc_17 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_18 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(7,9),c(1,6)> *) | DP_R_xml_0_non_scc_18_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0_non_scc_18 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_6 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_18 : forall x y, (DP_R_xml_0_non_scc_18 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_19 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(7,8),c(1,5)> *) | DP_R_xml_0_non_scc_19_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0_non_scc_19 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_5 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_19 : forall x y, (DP_R_xml_0_non_scc_19 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_20 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(7,7),c(1,4)> *) | DP_R_xml_0_non_scc_20_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0_non_scc_20 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_20 : forall x y, (DP_R_xml_0_non_scc_20 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_21 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(7,6),c(1,3)> *) | DP_R_xml_0_non_scc_21_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x5) -> DP_R_xml_0_non_scc_21 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_21 : forall x y, (DP_R_xml_0_non_scc_21 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_22 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(7,5),c(1,2)> *) | DP_R_xml_0_non_scc_22_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x5) -> DP_R_xml_0_non_scc_22 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_22 : forall x y, (DP_R_xml_0_non_scc_22 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_23 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(7,4),c(1,1)> *) | DP_R_xml_0_non_scc_23_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x5) -> DP_R_xml_0_non_scc_23 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_23 : forall x y, (DP_R_xml_0_non_scc_23 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_24 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(7,3),c(1,0)> *) | DP_R_xml_0_non_scc_24_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_3 nil) x5) -> DP_R_xml_0_non_scc_24 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_24 : forall x y, (DP_R_xml_0_non_scc_24 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_25 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(6,9),c(1,5)> *) | DP_R_xml_0_non_scc_25_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0_non_scc_25 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_5 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_25 : forall x y, (DP_R_xml_0_non_scc_25 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_26 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(6,8),c(1,4)> *) | DP_R_xml_0_non_scc_26_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0_non_scc_26 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_26 : forall x y, (DP_R_xml_0_non_scc_26 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_27 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(6,7),c(1,3)> *) | DP_R_xml_0_non_scc_27_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0_non_scc_27 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_27 : forall x y, (DP_R_xml_0_non_scc_27 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_28 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(6,6),c(1,2)> *) | DP_R_xml_0_non_scc_28_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x5) -> DP_R_xml_0_non_scc_28 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_28 : forall x y, (DP_R_xml_0_non_scc_28 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_29 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(6,5),c(1,1)> *) | DP_R_xml_0_non_scc_29_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x5) -> DP_R_xml_0_non_scc_29 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_29 : forall x y, (DP_R_xml_0_non_scc_29 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_30 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(6,4),c(1,0)> *) | DP_R_xml_0_non_scc_30_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x5) -> DP_R_xml_0_non_scc_30 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_30 : forall x y, (DP_R_xml_0_non_scc_30 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_31 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(5,9),c(1,4)> *) | DP_R_xml_0_non_scc_31_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0_non_scc_31 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_4 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_31 : forall x y, (DP_R_xml_0_non_scc_31 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_32 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(5,8),c(1,3)> *) | DP_R_xml_0_non_scc_32_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0_non_scc_32 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_32 : forall x y, (DP_R_xml_0_non_scc_32 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_33 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(5,7),c(1,2)> *) | DP_R_xml_0_non_scc_33_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0_non_scc_33 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_33 : forall x y, (DP_R_xml_0_non_scc_33 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_34 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(5,6),c(1,1)> *) | DP_R_xml_0_non_scc_34_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x5) -> DP_R_xml_0_non_scc_34 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_34 : forall x y, (DP_R_xml_0_non_scc_34 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_35 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(5,5),c(1,0)> *) | DP_R_xml_0_non_scc_35_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_5 nil) x5) -> DP_R_xml_0_non_scc_35 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_35 : forall x y, (DP_R_xml_0_non_scc_35 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_36 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(4,9),c(1,3)> *) | DP_R_xml_0_non_scc_36_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0_non_scc_36 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_3 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_36 : forall x y, (DP_R_xml_0_non_scc_36 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_37 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(4,8),c(1,2)> *) | DP_R_xml_0_non_scc_37_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0_non_scc_37 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_37 : forall x y, (DP_R_xml_0_non_scc_37 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_38 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(4,7),c(1,1)> *) | DP_R_xml_0_non_scc_38_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0_non_scc_38 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_38 : forall x y, (DP_R_xml_0_non_scc_38 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_39 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(4,6),c(1,0)> *) | DP_R_xml_0_non_scc_39_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_4 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_6 nil) x5) -> DP_R_xml_0_non_scc_39 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_39 : forall x y, (DP_R_xml_0_non_scc_39 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_40 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(3,9),c(1,2)> *) | DP_R_xml_0_non_scc_40_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_3 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0_non_scc_40 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_2 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_40 : forall x y, (DP_R_xml_0_non_scc_40 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_41 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(3,8),c(1,1)> *) | DP_R_xml_0_non_scc_41_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_3 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0_non_scc_41 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_41 : forall x y, (DP_R_xml_0_non_scc_41 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_42 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(3,7),c(1,0)> *) | DP_R_xml_0_non_scc_42_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_3 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_7 nil) x5) -> DP_R_xml_0_non_scc_42 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_42 : forall x y, (DP_R_xml_0_non_scc_42 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_43 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(2,9),c(1,1)> *) | DP_R_xml_0_non_scc_43_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0_non_scc_43 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_1 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_43 : forall x y, (DP_R_xml_0_non_scc_43 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_44 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(2,8),c(1,0)> *) | DP_R_xml_0_non_scc_44_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_2 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_8 nil) x5) -> DP_R_xml_0_non_scc_44 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_44 : forall x y, (DP_R_xml_0_non_scc_44 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_non_scc_45 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(1,9),c(1,0)> *) | DP_R_xml_0_non_scc_45_0 : forall x6 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_1 nil) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_9 nil) x5) -> DP_R_xml_0_non_scc_45 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id_1 nil):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Lemma acc_DP_R_xml_0_non_scc_45 : forall x y, (DP_R_xml_0_non_scc_45 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_scc_46 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* <+(x_,c(y_,z_)),c(y_,+(x_,z_))> *) | DP_R_xml_0_scc_46_0 : forall x2 x6 x1 x5 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_c (x2::x3::nil)) x5) -> DP_R_xml_0_scc_46 (algebra.Alg.Term algebra.F.id_c (x2:: (algebra.Alg.Term algebra.F.id__plus_ (x1:: x3::nil))::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* *) | DP_R_xml_0_scc_46_1 : forall x2 x6 x1 x5 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_c (x2::x3::nil)) x5) -> DP_R_xml_0_scc_46 (algebra.Alg.Term algebra.F.id_c ((algebra.Alg.Term algebra.F.id__plus_ (x1:: x2::nil))::x3::nil)) (algebra.Alg.Term algebra.F.id_c (x6::x5::nil)) (* *) | DP_R_xml_0_scc_46_2 : forall x2 x6 x1 x5 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_c (x2::x3::nil)) x5) -> DP_R_xml_0_scc_46 (algebra.Alg.Term algebra.F.id__plus_ (x1:: x2::nil)) (algebra.Alg.Term algebra.F.id_c (x6::x5::nil)) (* <+(x_,c(y_,z_)),+(x_,z_)> *) | DP_R_xml_0_scc_46_3 : forall x2 x6 x1 x5 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_c (x2::x3::nil)) x5) -> DP_R_xml_0_scc_46 (algebra.Alg.Term algebra.F.id__plus_ (x1:: x3::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(c(x_,y_),z_),c(x_,+(y_,z_))> *) | DP_R_xml_0_scc_46_4 : forall x2 x6 x1 x5 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_c (x1::x2::nil)) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x5) -> DP_R_xml_0_scc_46 (algebra.Alg.Term algebra.F.id_c (x1:: (algebra.Alg.Term algebra.F.id__plus_ (x2:: x3::nil))::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) (* <+(c(x_,y_),z_),+(y_,z_)> *) | DP_R_xml_0_scc_46_5 : forall x2 x6 x1 x5 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_c (x1::x2::nil)) x6) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x5) -> DP_R_xml_0_scc_46 (algebra.Alg.Term algebra.F.id__plus_ (x2:: x3::nil)) (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) . Module WF_DP_R_xml_0_scc_46. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id__plus_ (x5:Z) (x6:Z) := 1* x5 + 1* x6. Definition P_id_7 := 2. Definition P_id_3 := 1. Definition P_id_1 := 1. Definition P_id_9 := 2. Definition P_id_5 := 1. Definition P_id_0 := 0. Definition P_id_8 := 2. Definition P_id_4 := 1. Definition P_id_2 := 1. Definition P_id_c (x5:Z) (x6:Z) := 1 + 1* x5 + 1* x6. Definition P_id_6 := 2. Lemma P_id__plus__monotonic : forall x8 x6 x5 x7, (0 <= x8)/\ (x8 <= x7) -> (0 <= x6)/\ (x6 <= x5) ->P_id__plus_ x6 x8 <= P_id__plus_ x5 x7. Proof. intros x8 x7 x6 x5. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_c_monotonic : forall x8 x6 x5 x7, (0 <= x8)/\ (x8 <= x7) -> (0 <= x6)/\ (x6 <= x5) ->P_id_c x6 x8 <= P_id_c x5 x7. Proof. intros x8 x7 x6 x5. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id__plus__bounded : forall x6 x5, (0 <= x5) ->(0 <= x6) ->0 <= P_id__plus_ x6 x5. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_7_bounded : 0 <= P_id_7 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_3_bounded : 0 <= P_id_3 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_1_bounded : 0 <= P_id_1 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_9_bounded : 0 <= P_id_9 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_5_bounded : 0 <= P_id_5 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_0_bounded : 0 <= P_id_0 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_8_bounded : 0 <= P_id_8 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_4_bounded : 0 <= P_id_4 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_2_bounded : 0 <= P_id_2 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_c_bounded : forall x6 x5, (0 <= x5) ->(0 <= x6) ->0 <= P_id_c x6 x5. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_6_bounded : 0 <= P_id_6 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id__plus_ P_id_7 P_id_3 P_id_1 P_id_9 P_id_5 P_id_0 P_id_8 P_id_4 P_id_2 P_id_c P_id_6. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id__plus_ (x6::x5::nil)) => P_id__plus_ (measure x6) (measure x5) | (algebra.Alg.Term algebra.F.id_7 nil) => P_id_7 | (algebra.Alg.Term algebra.F.id_3 nil) => P_id_3 | (algebra.Alg.Term algebra.F.id_1 nil) => P_id_1 | (algebra.Alg.Term algebra.F.id_9 nil) => P_id_9 | (algebra.Alg.Term algebra.F.id_5 nil) => P_id_5 | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id_8 nil) => P_id_8 | (algebra.Alg.Term algebra.F.id_4 nil) => P_id_4 | (algebra.Alg.Term algebra.F.id_2 nil) => P_id_2 | (algebra.Alg.Term algebra.F.id_c (x6::x5::nil)) => P_id_c (measure x6) (measure x5) | (algebra.Alg.Term algebra.F.id_6 nil) => P_id_6 | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id__plus__monotonic;assumption. intros ;apply P_id_c_monotonic;assumption. intros ;apply P_id__plus__bounded;assumption. intros ;apply P_id_7_bounded;assumption. intros ;apply P_id_3_bounded;assumption. intros ;apply P_id_1_bounded;assumption. intros ;apply P_id_9_bounded;assumption. intros ;apply P_id_5_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_8_bounded;assumption. intros ;apply P_id_4_bounded;assumption. intros ;apply P_id_2_bounded;assumption. intros ;apply P_id_c_bounded;assumption. intros ;apply P_id_6_bounded;assumption. apply rules_monotonic. Qed. Definition P_id__plus__hat_1 (x5:Z) (x6:Z) := 1* x5 + 1* x6. Definition P_id_C (x5:Z) (x6:Z) := 1* x5 + 1* x6. Lemma P_id__plus__hat_1_monotonic : forall x8 x6 x5 x7, (0 <= x8)/\ (x8 <= x7) -> (0 <= x6)/\ (x6 <= x5) -> P_id__plus__hat_1 x6 x8 <= P_id__plus__hat_1 x5 x7. Proof. intros x8 x7 x6 x5. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_C_monotonic : forall x8 x6 x5 x7, (0 <= x8)/\ (x8 <= x7) -> (0 <= x6)/\ (x6 <= x5) ->P_id_C x6 x8 <= P_id_C x5 x7. Proof. intros x8 x7 x6 x5. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id__plus_ P_id_7 P_id_3 P_id_1 P_id_9 P_id_5 P_id_0 P_id_8 P_id_4 P_id_2 P_id_c P_id_6 P_id__plus__hat_1 P_id_C. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id__plus_ (x6:: x5::nil)) => P_id__plus__hat_1 (measure x6) (measure x5) | (algebra.Alg.Term algebra.F.id_c (x6::x5::nil)) => P_id_C (measure x6) (measure x5) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id__plus__monotonic;assumption. intros ;apply P_id_c_monotonic;assumption. intros ;apply P_id__plus__bounded;assumption. intros ;apply P_id_7_bounded;assumption. intros ;apply P_id_3_bounded;assumption. intros ;apply P_id_1_bounded;assumption. intros ;apply P_id_9_bounded;assumption. intros ;apply P_id_5_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_8_bounded;assumption. intros ;apply P_id_4_bounded;assumption. intros ;apply P_id_2_bounded;assumption. intros ;apply P_id_c_bounded;assumption. intros ;apply P_id_6_bounded;assumption. apply rules_monotonic. intros ;apply P_id__plus__hat_1_monotonic;assumption. intros ;apply P_id_C_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_46. Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_46. Definition wf_DP_R_xml_0_scc_46 := WF_DP_R_xml_0_scc_46.wf. Lemma acc_DP_R_xml_0_scc_46 : forall x y, (DP_R_xml_0_scc_46 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_46). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((eapply acc_DP_R_xml_0_non_scc_45; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_44; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_43; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_42; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_41; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_40; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_39; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_38; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_37; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_36; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_35; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_34; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_33; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_32; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_31; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_30; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_29; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_28; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_27; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_26; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_25; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_24; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_23; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_22; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_21; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_20; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_19; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_18; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_17; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_16; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_15; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_14; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_13; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_12; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_11; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_10; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_9; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_8; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_7; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_6; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_5; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_4; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' )))))))))))))))))))))))))))))))))))))))))))))))). apply wf_DP_R_xml_0_scc_46. Qed. Lemma wf : well_founded WF_R_xml_0_deep_rew.DP_R_xml_0. Proof. constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_non_scc_45; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_44; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_43; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_42; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_41; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_40; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_39; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_38; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_37; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_36; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_35; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_34; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_33; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_32; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_31; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_30; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_29; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_28; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_27; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_26; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_25; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_24; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_23; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_22; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_21; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_20; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_19; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_18; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_17; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_16; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_15; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_14; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_13; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_12; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_11; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_10; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_9; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_8; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_7; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_6; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_5; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_4; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_0; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_46; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_45; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_44; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_43; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_42; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_41; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_40; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_39; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_38; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_37; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_36; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_35; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_34; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_33; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_32; econstructor (eassumption)|| (algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_31; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_30; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| (( eapply acc_DP_R_xml_0_scc_29; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_28; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_27; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_26; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_25; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_24; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_23; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_22; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_21; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_20; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_19; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_18; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_17; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_16; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_15; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_14; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_13; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_12; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_11; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_10; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_9; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_8; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_7; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_6; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_5; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_4; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_3; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_2; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_1; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( eapply acc_DP_R_xml_0_scc_0; econstructor ( eassumption)|| ( algebra.Alg_ext.star_refl' ))|| ( ( R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| ( fail)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))). Qed. End WF_DP_R_xml_0. Definition wf_H := WF_DP_R_xml_0.wf. Lemma wf : well_founded (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules). Proof. apply ddp.dp_criterion. apply R_xml_0_deep_rew.R_xml_0_non_var. apply R_xml_0_deep_rew.R_xml_0_reg. intros ; apply (ddp.constructor_defined_dec _ _ R_xml_0_deep_rew.R_xml_0_rules_included). refine (Inclusion.wf_incl _ _ _ _ wf_H). intros x y H. destruct (R_xml_0_dp_step_spec H) as [f [l1 [l2 [H1 [H2 H3]]]]]. destruct (ddp.dp_list_complete _ _ R_xml_0_deep_rew.R_xml_0_rules_included _ _ H3) as [x' [y' [sigma [h1 [h2 h3]]]]]. clear H3. subst. vm_compute in h3|-. let e := type of h3 in (dp_concl_tac h2 h3 ltac:(fun _ => idtac) e). Qed. End WF_R_xml_0_deep_rew. (* *** Local Variables: *** *** coq-prog-name: "coqtop" *** *** coq-prog-args: ("-emacs-U" "-I" "$COCCINELLE/examples" "-I" "$COCCINELLE/term_algebra" "-I" "$COCCINELLE/term_orderings" "-I" "$COCCINELLE/basis" "-I" "$COCCINELLE/list_extensions" "-I" "$COCCINELLE/examples/cime_trace/") *** *** compile-command: "coqc -I $COCCINELLE/term_algebra -I $COCCINELLE/term_orderings -I $COCCINELLE/basis -I $COCCINELLE/list_extensions -I $COCCINELLE/examples/cime_trace/ -I $COCCINELLE/examples/ c_output/strat/tpdb-5.0___TRS___HM___t000.trs/a3pat.v" *** *** End: *** *)