Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _0_2 : symb | _1_3 : symb | _2_4 : symb | _3_5 : symb | _4_6 : symb | _5_7 : symb | _6_8 : symb | _7_9 : symb | _8_10 : symb | _9_11 : symb | _plus__1 : symb | c : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._0_2 => 0 | M._1_3 => 0 | M._2_4 => 0 | M._3_5 => 0 | M._4_6 => 0 | M._5_7 => 0 | M._6_8 => 0 | M._7_9 => 0 | M._8_10 => 0 | M._9_11 => 0 | M._plus__1 => 2 | M.c => 2 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _0_2 := F0 M._0_2 Vnil. Definition _1_3 := F0 M._1_3 Vnil. Definition _2_4 := F0 M._2_4 Vnil. Definition _3_5 := F0 M._3_5 Vnil. Definition _4_6 := F0 M._4_6 Vnil. Definition _5_7 := F0 M._5_7 Vnil. Definition _6_8 := F0 M._6_8 Vnil. Definition _7_9 := F0 M._7_9 Vnil. Definition _8_10 := F0 M._8_10 Vnil. Definition _9_11 := F0 M._9_11 Vnil. Definition _plus__1 x2 x1 := F0 M._plus__1 (Vcons x2 (Vcons x1 Vnil)). Definition c x2 x1 := F0 M.c (Vcons x2 (Vcons x1 Vnil)). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0._plus__1 S0._0_2 S0._0_2) S0._0_2 :: R0 (S0._plus__1 S0._0_2 S0._1_3) S0._1_3 :: R0 (S0._plus__1 S0._0_2 S0._2_4) S0._2_4 :: R0 (S0._plus__1 S0._0_2 S0._3_5) S0._3_5 :: R0 (S0._plus__1 S0._0_2 S0._4_6) S0._4_6 :: R0 (S0._plus__1 S0._0_2 S0._5_7) S0._5_7 :: R0 (S0._plus__1 S0._0_2 S0._6_8) S0._6_8 :: R0 (S0._plus__1 S0._0_2 S0._7_9) S0._7_9 :: R0 (S0._plus__1 S0._0_2 S0._8_10) S0._8_10 :: R0 (S0._plus__1 S0._0_2 S0._9_11) S0._9_11 :: R0 (S0._plus__1 S0._1_3 S0._0_2) S0._1_3 :: R0 (S0._plus__1 S0._1_3 S0._1_3) S0._2_4 :: R0 (S0._plus__1 S0._1_3 S0._2_4) S0._3_5 :: R0 (S0._plus__1 S0._1_3 S0._3_5) S0._4_6 :: R0 (S0._plus__1 S0._1_3 S0._4_6) S0._5_7 :: R0 (S0._plus__1 S0._1_3 S0._5_7) S0._6_8 :: R0 (S0._plus__1 S0._1_3 S0._6_8) S0._7_9 :: R0 (S0._plus__1 S0._1_3 S0._7_9) S0._8_10 :: R0 (S0._plus__1 S0._1_3 S0._8_10) S0._9_11 :: R0 (S0._plus__1 S0._1_3 S0._9_11) (S0.c S0._1_3 S0._0_2) :: R0 (S0._plus__1 S0._2_4 S0._0_2) S0._2_4 :: R0 (S0._plus__1 S0._2_4 S0._1_3) S0._3_5 :: R0 (S0._plus__1 S0._2_4 S0._2_4) S0._4_6 :: R0 (S0._plus__1 S0._2_4 S0._3_5) S0._5_7 :: R0 (S0._plus__1 S0._2_4 S0._4_6) S0._6_8 :: R0 (S0._plus__1 S0._2_4 S0._5_7) S0._7_9 :: R0 (S0._plus__1 S0._2_4 S0._6_8) S0._8_10 :: R0 (S0._plus__1 S0._2_4 S0._7_9) S0._9_11 :: R0 (S0._plus__1 S0._2_4 S0._8_10) (S0.c S0._1_3 S0._0_2) :: R0 (S0._plus__1 S0._2_4 S0._9_11) (S0.c S0._1_3 S0._1_3) :: R0 (S0._plus__1 S0._3_5 S0._0_2) S0._3_5 :: R0 (S0._plus__1 S0._3_5 S0._1_3) S0._4_6 :: R0 (S0._plus__1 S0._3_5 S0._2_4) S0._5_7 :: R0 (S0._plus__1 S0._3_5 S0._3_5) S0._6_8 :: R0 (S0._plus__1 S0._3_5 S0._4_6) S0._7_9 :: R0 (S0._plus__1 S0._3_5 S0._5_7) S0._8_10 :: R0 (S0._plus__1 S0._3_5 S0._6_8) S0._9_11 :: R0 (S0._plus__1 S0._3_5 S0._7_9) (S0.c S0._1_3 S0._0_2) :: R0 (S0._plus__1 S0._3_5 S0._8_10) (S0.c S0._1_3 S0._1_3) :: R0 (S0._plus__1 S0._3_5 S0._9_11) (S0.c S0._1_3 S0._2_4) :: R0 (S0._plus__1 S0._4_6 S0._0_2) S0._4_6 :: R0 (S0._plus__1 S0._4_6 S0._1_3) S0._5_7 :: R0 (S0._plus__1 S0._4_6 S0._2_4) S0._6_8 :: R0 (S0._plus__1 S0._4_6 S0._3_5) S0._7_9 :: R0 (S0._plus__1 S0._4_6 S0._4_6) S0._8_10 :: R0 (S0._plus__1 S0._4_6 S0._5_7) S0._9_11 :: R0 (S0._plus__1 S0._4_6 S0._6_8) (S0.c S0._1_3 S0._0_2) :: R0 (S0._plus__1 S0._4_6 S0._7_9) (S0.c S0._1_3 S0._1_3) :: R0 (S0._plus__1 S0._4_6 S0._8_10) (S0.c S0._1_3 S0._2_4) :: R0 (S0._plus__1 S0._4_6 S0._9_11) (S0.c S0._1_3 S0._3_5) :: R0 (S0._plus__1 S0._5_7 S0._0_2) S0._5_7 :: R0 (S0._plus__1 S0._5_7 S0._1_3) S0._6_8 :: R0 (S0._plus__1 S0._5_7 S0._2_4) S0._7_9 :: R0 (S0._plus__1 S0._5_7 S0._3_5) S0._8_10 :: R0 (S0._plus__1 S0._5_7 S0._4_6) S0._9_11 :: R0 (S0._plus__1 S0._5_7 S0._5_7) (S0.c S0._1_3 S0._0_2) :: R0 (S0._plus__1 S0._5_7 S0._6_8) (S0.c S0._1_3 S0._1_3) :: R0 (S0._plus__1 S0._5_7 S0._7_9) (S0.c S0._1_3 S0._2_4) :: R0 (S0._plus__1 S0._5_7 S0._8_10) (S0.c S0._1_3 S0._3_5) :: R0 (S0._plus__1 S0._5_7 S0._9_11) (S0.c S0._1_3 S0._4_6) :: R0 (S0._plus__1 S0._6_8 S0._0_2) S0._6_8 :: R0 (S0._plus__1 S0._6_8 S0._1_3) S0._7_9 :: R0 (S0._plus__1 S0._6_8 S0._2_4) S0._8_10 :: R0 (S0._plus__1 S0._6_8 S0._3_5) S0._9_11 :: R0 (S0._plus__1 S0._6_8 S0._4_6) (S0.c S0._1_3 S0._0_2) :: R0 (S0._plus__1 S0._6_8 S0._5_7) (S0.c S0._1_3 S0._1_3) :: R0 (S0._plus__1 S0._6_8 S0._6_8) (S0.c S0._1_3 S0._2_4) :: R0 (S0._plus__1 S0._6_8 S0._7_9) (S0.c S0._1_3 S0._3_5) :: R0 (S0._plus__1 S0._6_8 S0._8_10) (S0.c S0._1_3 S0._4_6) :: R0 (S0._plus__1 S0._6_8 S0._9_11) (S0.c S0._1_3 S0._5_7) :: R0 (S0._plus__1 S0._7_9 S0._0_2) S0._7_9 :: R0 (S0._plus__1 S0._7_9 S0._1_3) S0._8_10 :: R0 (S0._plus__1 S0._7_9 S0._2_4) S0._9_11 :: R0 (S0._plus__1 S0._7_9 S0._3_5) (S0.c S0._1_3 S0._0_2) :: R0 (S0._plus__1 S0._7_9 S0._4_6) (S0.c S0._1_3 S0._1_3) :: R0 (S0._plus__1 S0._7_9 S0._5_7) (S0.c S0._1_3 S0._2_4) :: R0 (S0._plus__1 S0._7_9 S0._6_8) (S0.c S0._1_3 S0._3_5) :: R0 (S0._plus__1 S0._7_9 S0._7_9) (S0.c S0._1_3 S0._4_6) :: R0 (S0._plus__1 S0._7_9 S0._8_10) (S0.c S0._1_3 S0._5_7) :: R0 (S0._plus__1 S0._7_9 S0._9_11) (S0.c S0._1_3 S0._6_8) :: R0 (S0._plus__1 S0._8_10 S0._0_2) S0._8_10 :: R0 (S0._plus__1 S0._8_10 S0._1_3) S0._9_11 :: R0 (S0._plus__1 S0._8_10 S0._2_4) (S0.c S0._1_3 S0._0_2) :: R0 (S0._plus__1 S0._8_10 S0._3_5) (S0.c S0._1_3 S0._1_3) :: R0 (S0._plus__1 S0._8_10 S0._4_6) (S0.c S0._1_3 S0._2_4) :: R0 (S0._plus__1 S0._8_10 S0._5_7) (S0.c S0._1_3 S0._3_5) :: R0 (S0._plus__1 S0._8_10 S0._6_8) (S0.c S0._1_3 S0._4_6) :: R0 (S0._plus__1 S0._8_10 S0._7_9) (S0.c S0._1_3 S0._5_7) :: R0 (S0._plus__1 S0._8_10 S0._8_10) (S0.c S0._1_3 S0._6_8) :: R0 (S0._plus__1 S0._8_10 S0._9_11) (S0.c S0._1_3 S0._7_9) :: R0 (S0._plus__1 S0._9_11 S0._0_2) S0._9_11 :: R0 (S0._plus__1 S0._9_11 S0._1_3) (S0.c S0._1_3 S0._0_2) :: R0 (S0._plus__1 S0._9_11 S0._2_4) (S0.c S0._1_3 S0._1_3) :: R0 (S0._plus__1 S0._9_11 S0._3_5) (S0.c S0._1_3 S0._2_4) :: R0 (S0._plus__1 S0._9_11 S0._4_6) (S0.c S0._1_3 S0._3_5) :: R0 (S0._plus__1 S0._9_11 S0._5_7) (S0.c S0._1_3 S0._4_6) :: R0 (S0._plus__1 S0._9_11 S0._6_8) (S0.c S0._1_3 S0._5_7) :: R0 (S0._plus__1 S0._9_11 S0._7_9) (S0.c S0._1_3 S0._6_8) :: R0 (S0._plus__1 S0._9_11 S0._8_10) (S0.c S0._1_3 S0._7_9) :: R0 (S0._plus__1 S0._9_11 S0._9_11) (S0.c S0._1_3 S0._8_10) :: R0 (S0._plus__1 (V0 0) (S0.c (V0 1) (V0 2))) (S0.c (V0 1) (S0._plus__1 (V0 0) (V0 2))) :: R0 (S0._plus__1 (S0.c (V0 0) (V0 1)) (V0 2)) (S0.c (V0 0) (S0._plus__1 (V0 1) (V0 2))) :: R0 (S0.c S0._0_2 (V0 0)) (V0 0) :: R0 (S0.c (V0 0) (S0.c (V0 1) (V0 2))) (S0.c (S0._plus__1 (V0 0) (V0 1)) (V0 2)) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_0_2 := F1 (hd_symb s1_p M._0_2) Vnil. Definition _0_2 := F1 (int_symb s1_p M._0_2) Vnil. Definition h_1_3 := F1 (hd_symb s1_p M._1_3) Vnil. Definition _1_3 := F1 (int_symb s1_p M._1_3) Vnil. Definition h_2_4 := F1 (hd_symb s1_p M._2_4) Vnil. Definition _2_4 := F1 (int_symb s1_p M._2_4) Vnil. Definition h_3_5 := F1 (hd_symb s1_p M._3_5) Vnil. Definition _3_5 := F1 (int_symb s1_p M._3_5) Vnil. Definition h_4_6 := F1 (hd_symb s1_p M._4_6) Vnil. Definition _4_6 := F1 (int_symb s1_p M._4_6) Vnil. Definition h_5_7 := F1 (hd_symb s1_p M._5_7) Vnil. Definition _5_7 := F1 (int_symb s1_p M._5_7) Vnil. Definition h_6_8 := F1 (hd_symb s1_p M._6_8) Vnil. Definition _6_8 := F1 (int_symb s1_p M._6_8) Vnil. Definition h_7_9 := F1 (hd_symb s1_p M._7_9) Vnil. Definition _7_9 := F1 (int_symb s1_p M._7_9) Vnil. Definition h_8_10 := F1 (hd_symb s1_p M._8_10) Vnil. Definition _8_10 := F1 (int_symb s1_p M._8_10) Vnil. Definition h_9_11 := F1 (hd_symb s1_p M._9_11) Vnil. Definition _9_11 := F1 (int_symb s1_p M._9_11) Vnil. Definition h_plus__1 x2 x1 := F1 (hd_symb s1_p M._plus__1) (Vcons x2 (Vcons x1 Vnil)). Definition _plus__1 x2 x1 := F1 (int_symb s1_p M._plus__1) (Vcons x2 (Vcons x1 Vnil)). Definition hc x2 x1 := F1 (hd_symb s1_p M.c) (Vcons x2 (Vcons x1 Vnil)). Definition c x2 x1 := F1 (int_symb s1_p M.c) (Vcons x2 (Vcons x1 Vnil)). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.h_plus__1 (S1._9_11) (S1._9_11)) (S1.hc (S1._1_3) (S1._8_10)) :: nil) :: ( R1 (S1.h_plus__1 (S1._9_11) (S1._8_10)) (S1.hc (S1._1_3) (S1._7_9)) :: nil) :: ( R1 (S1.h_plus__1 (S1._9_11) (S1._7_9)) (S1.hc (S1._1_3) (S1._6_8)) :: nil) :: ( R1 (S1.h_plus__1 (S1._9_11) (S1._6_8)) (S1.hc (S1._1_3) (S1._5_7)) :: nil) :: ( R1 (S1.h_plus__1 (S1._9_11) (S1._5_7)) (S1.hc (S1._1_3) (S1._4_6)) :: nil) :: ( R1 (S1.h_plus__1 (S1._9_11) (S1._4_6)) (S1.hc (S1._1_3) (S1._3_5)) :: nil) :: ( R1 (S1.h_plus__1 (S1._9_11) (S1._3_5)) (S1.hc (S1._1_3) (S1._2_4)) :: nil) :: ( R1 (S1.h_plus__1 (S1._9_11) (S1._2_4)) (S1.hc (S1._1_3) (S1._1_3)) :: nil) :: ( R1 (S1.h_plus__1 (S1._9_11) (S1._1_3)) (S1.hc (S1._1_3) (S1._0_2)) :: nil) :: ( R1 (S1.h_plus__1 (S1._8_10) (S1._9_11)) (S1.hc (S1._1_3) (S1._7_9)) :: nil) :: ( R1 (S1.h_plus__1 (S1._8_10) (S1._8_10)) (S1.hc (S1._1_3) (S1._6_8)) :: nil) :: ( R1 (S1.h_plus__1 (S1._8_10) (S1._7_9)) (S1.hc (S1._1_3) (S1._5_7)) :: nil) :: ( R1 (S1.h_plus__1 (S1._8_10) (S1._6_8)) (S1.hc (S1._1_3) (S1._4_6)) :: nil) :: ( R1 (S1.h_plus__1 (S1._8_10) (S1._5_7)) (S1.hc (S1._1_3) (S1._3_5)) :: nil) :: ( R1 (S1.h_plus__1 (S1._8_10) (S1._4_6)) (S1.hc (S1._1_3) (S1._2_4)) :: nil) :: ( R1 (S1.h_plus__1 (S1._8_10) (S1._3_5)) (S1.hc (S1._1_3) (S1._1_3)) :: nil) :: ( R1 (S1.h_plus__1 (S1._8_10) (S1._2_4)) (S1.hc (S1._1_3) (S1._0_2)) :: nil) :: ( R1 (S1.h_plus__1 (S1._7_9) (S1._9_11)) (S1.hc (S1._1_3) (S1._6_8)) :: nil) :: ( R1 (S1.h_plus__1 (S1._7_9) (S1._8_10)) (S1.hc (S1._1_3) (S1._5_7)) :: nil) :: ( R1 (S1.h_plus__1 (S1._7_9) (S1._7_9)) (S1.hc (S1._1_3) (S1._4_6)) :: nil) :: ( R1 (S1.h_plus__1 (S1._7_9) (S1._6_8)) (S1.hc (S1._1_3) (S1._3_5)) :: nil) :: ( R1 (S1.h_plus__1 (S1._7_9) (S1._5_7)) (S1.hc (S1._1_3) (S1._2_4)) :: nil) :: ( R1 (S1.h_plus__1 (S1._7_9) (S1._4_6)) (S1.hc (S1._1_3) (S1._1_3)) :: nil) :: ( R1 (S1.h_plus__1 (S1._7_9) (S1._3_5)) (S1.hc (S1._1_3) (S1._0_2)) :: nil) :: ( R1 (S1.h_plus__1 (S1._6_8) (S1._9_11)) (S1.hc (S1._1_3) (S1._5_7)) :: nil) :: ( R1 (S1.h_plus__1 (S1._6_8) (S1._8_10)) (S1.hc (S1._1_3) (S1._4_6)) :: nil) :: ( R1 (S1.h_plus__1 (S1._6_8) (S1._7_9)) (S1.hc (S1._1_3) (S1._3_5)) :: nil) :: ( R1 (S1.h_plus__1 (S1._6_8) (S1._6_8)) (S1.hc (S1._1_3) (S1._2_4)) :: nil) :: ( R1 (S1.h_plus__1 (S1._6_8) (S1._5_7)) (S1.hc (S1._1_3) (S1._1_3)) :: nil) :: ( R1 (S1.h_plus__1 (S1._6_8) (S1._4_6)) (S1.hc (S1._1_3) (S1._0_2)) :: nil) :: ( R1 (S1.h_plus__1 (S1._5_7) (S1._9_11)) (S1.hc (S1._1_3) (S1._4_6)) :: nil) :: ( R1 (S1.h_plus__1 (S1._5_7) (S1._8_10)) (S1.hc (S1._1_3) (S1._3_5)) :: nil) :: ( R1 (S1.h_plus__1 (S1._5_7) (S1._7_9)) (S1.hc (S1._1_3) (S1._2_4)) :: nil) :: ( R1 (S1.h_plus__1 (S1._5_7) (S1._6_8)) (S1.hc (S1._1_3) (S1._1_3)) :: nil) :: ( R1 (S1.h_plus__1 (S1._5_7) (S1._5_7)) (S1.hc (S1._1_3) (S1._0_2)) :: nil) :: ( R1 (S1.h_plus__1 (S1._4_6) (S1._9_11)) (S1.hc (S1._1_3) (S1._3_5)) :: nil) :: ( R1 (S1.h_plus__1 (S1._4_6) (S1._8_10)) (S1.hc (S1._1_3) (S1._2_4)) :: nil) :: ( R1 (S1.h_plus__1 (S1._4_6) (S1._7_9)) (S1.hc (S1._1_3) (S1._1_3)) :: nil) :: ( R1 (S1.h_plus__1 (S1._4_6) (S1._6_8)) (S1.hc (S1._1_3) (S1._0_2)) :: nil) :: ( R1 (S1.h_plus__1 (S1._3_5) (S1._9_11)) (S1.hc (S1._1_3) (S1._2_4)) :: nil) :: ( R1 (S1.h_plus__1 (S1._3_5) (S1._8_10)) (S1.hc (S1._1_3) (S1._1_3)) :: nil) :: ( R1 (S1.h_plus__1 (S1._3_5) (S1._7_9)) (S1.hc (S1._1_3) (S1._0_2)) :: nil) :: ( R1 (S1.h_plus__1 (S1._2_4) (S1._9_11)) (S1.hc (S1._1_3) (S1._1_3)) :: nil) :: ( R1 (S1.h_plus__1 (S1._2_4) (S1._8_10)) (S1.hc (S1._1_3) (S1._0_2)) :: nil) :: ( R1 (S1.h_plus__1 (S1._1_3) (S1._9_11)) (S1.hc (S1._1_3) (S1._0_2)) :: nil) :: ( R1 (S1.h_plus__1 (V1 0) (S1.c (V1 1) (V1 2))) (S1.hc (V1 1) (S1._plus__1 (V1 0) (V1 2))) :: R1 (S1.hc (V1 0) (S1.c (V1 1) (V1 2))) (S1.hc (S1._plus__1 (V1 0) (V1 1)) (V1 2)) :: R1 (S1.hc (V1 0) (S1.c (V1 1) (V1 2))) (S1.h_plus__1 (V1 0) (V1 1)) :: R1 (S1.h_plus__1 (V1 0) (S1.c (V1 1) (V1 2))) (S1.h_plus__1 (V1 0) (V1 2)) :: R1 (S1.h_plus__1 (S1.c (V1 0) (V1 1)) (V1 2)) (S1.hc (V1 0) (S1._plus__1 (V1 1) (V1 2))) :: R1 (S1.h_plus__1 (S1.c (V1 0) (V1 1)) (V1 2)) (S1.h_plus__1 (V1 1) (V1 2)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M._plus__1) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M._plus__1) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_2) => nil | (int_symb M._0_2) => nil | (hd_symb M._1_3) => nil | (int_symb M._1_3) => (1%Z, Vnil) :: nil | (hd_symb M._2_4) => nil | (int_symb M._2_4) => (1%Z, Vnil) :: nil | (hd_symb M._3_5) => nil | (int_symb M._3_5) => (1%Z, Vnil) :: nil | (hd_symb M._4_6) => nil | (int_symb M._4_6) => (1%Z, Vnil) :: nil | (hd_symb M._5_7) => nil | (int_symb M._5_7) => (1%Z, Vnil) :: nil | (hd_symb M._6_8) => nil | (int_symb M._6_8) => (2%Z, Vnil) :: nil | (hd_symb M._7_9) => nil | (int_symb M._7_9) => (2%Z, Vnil) :: nil | (hd_symb M._8_10) => nil | (int_symb M._8_10) => (2%Z, Vnil) :: nil | (hd_symb M._9_11) => nil | (int_symb M._9_11) => (2%Z, Vnil) :: nil | (hd_symb M.c) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.c) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. right. PI1.prove_termination. termination_trivial. Qed.