-#( s( x ) , s( y ) ) | → | -#( x , y ) |
<=#( s( x ) , s( y ) ) | → | <=#( x , y ) |
perfectp#( s( x ) ) | → | f#( x , s( 0 ) , s( x ) , s( x ) ) |
f#( s( x ) , 0 , z , u ) | → | f#( x , u , -( z , s( x ) ) , u ) |
f#( s( x ) , 0 , z , u ) | → | -#( z , s( x ) ) |
f#( s( x ) , s( y ) , z , u ) | → | if#( <=( x , y ) , f( s( x ) , -( y , x ) , z , u ) , f( x , u , z , u ) ) |
f#( s( x ) , s( y ) , z , u ) | → | <=#( x , y ) |
f#( s( x ) , s( y ) , z , u ) | → | f#( s( x ) , -( y , x ) , z , u ) |
f#( s( x ) , s( y ) , z , u ) | → | -#( y , x ) |
f#( s( x ) , s( y ) , z , u ) | → | f#( x , u , z , u ) |
The dependency pairs are split into 3 component(s).
f#( s( x ) , s( y ) , z , u ) | → | f#( s( x ) , -( y , x ) , z , u ) |
f#( s( x ) , 0 , z , u ) | → | f#( x , u , -( z , s( x ) ) , u ) |
f#( s( x ) , s( y ) , z , u ) | → | f#( x , u , z , u ) |
Linear polynomial interpretation over the naturals
[true] | = | 0 | |
[if (x1, x2, x3) ] | = | 2 x1 + x2 | |
[f (x1, ..., x4) ] | = | 0 | |
[<= (x1, x2) ] | = | x1 + x2 | |
[false] | = | 0 | |
[f# (x1, ..., x4) ] | = | 2 x1 + x2 | |
[- (x1, x2) ] | = | x1 + x2 + 1 | |
[s (x1) ] | = | 2 x1 + 1 | |
[0] | = | 0 | |
[perfectp (x1) ] | = | 1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
f#( s( x ) , s( y ) , z , u ) | → | f#( s( x ) , -( y , x ) , z , u ) |
f#( s( x ) , 0 , z , u ) | → | f#( x , u , -( z , s( x ) ) , u ) |
Linear polynomial interpretation over the naturals
[true] | = | 0 | |
[if (x1, x2, x3) ] | = | x1 + 2 x2 | |
[f (x1, ..., x4) ] | = | 0 | |
[<= (x1, x2) ] | = | 3 x1 | |
[false] | = | 0 | |
[f# (x1, ..., x4) ] | = | 2 x1 | |
[- (x1, x2) ] | = | x1 + 2 x2 | |
[s (x1) ] | = | x1 + 1 | |
[0] | = | 0 | |
[perfectp (x1) ] | = | 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
f#( s( x ) , s( y ) , z , u ) | → | f#( s( x ) , -( y , x ) , z , u ) |
Linear polynomial interpretation over the naturals
[true] | = | 0 | |
[if (x1, x2, x3) ] | = | x1 + x2 | |
[f (x1, ..., x4) ] | = | 0 | |
[<= (x1, x2) ] | = | 3 x1 | |
[false] | = | 0 | |
[f# (x1, ..., x4) ] | = | 2 x1 | |
[- (x1, x2) ] | = | x1 | |
[s (x1) ] | = | 2 x1 + 2 | |
[0] | = | 0 | |
[perfectp (x1) ] | = | 3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
-#( s( x ) , s( y ) ) | → | -#( x , y ) |
Linear polynomial interpretation over the naturals
[true] | = | 0 | |
[if (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[f (x1, ..., x4) ] | = | 0 | |
[<= (x1, x2) ] | = | 2 x1 | |
[false] | = | 0 | |
[- (x1, x2) ] | = | 2 x1 + 2 x2 | |
[s (x1) ] | = | 2 x1 + 1 | |
[0] | = | 0 | |
[perfectp (x1) ] | = | 0 | |
[-# (x1, x2) ] | = | x1 + x2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
<=#( s( x ) , s( y ) ) | → | <=#( x , y ) |
Linear polynomial interpretation over the naturals
[<=# (x1, x2) ] | = | x1 + x2 | |
[true] | = | 0 | |
[if (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
[f (x1, ..., x4) ] | = | 0 | |
[<= (x1, x2) ] | = | 2 x1 | |
[false] | = | 0 | |
[- (x1, x2) ] | = | 2 x1 + 2 x2 | |
[s (x1) ] | = | 2 x1 + 1 | |
[0] | = | 0 | |
[perfectp (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.