-#( s( x ) , s( y ) ) | → | -#( x , y ) |
lt#( s( x ) , s( y ) ) | → | lt#( x , y ) |
div#( s( x ) , s( y ) ) | → | if#( lt( x , y ) , 0 , s( div( -( x , y ) , s( y ) ) ) ) |
div#( s( x ) , s( y ) ) | → | lt#( x , y ) |
div#( s( x ) , s( y ) ) | → | div#( -( x , y ) , s( y ) ) |
div#( s( x ) , s( y ) ) | → | -#( x , y ) |
The dependency pairs are split into 3 component(s).
div#( s( x ) , s( y ) ) | → | div#( -( x , y ) , s( y ) ) |
Linear polynomial interpretation over the naturals
[true] | = | 0 | |
[if (x1, x2, x3) ] | = | x1 + x2 | |
[false] | = | 0 | |
[lt (x1, x2) ] | = | 1 | |
[- (x1, x2) ] | = | x1 | |
[s (x1) ] | = | x1 + 2 | |
[0] | = | 0 | |
[div# (x1, x2) ] | = | x1 | |
[div (x1, x2) ] | = | x1 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
-#( s( x ) , s( y ) ) | → | -#( x , y ) |
Linear polynomial interpretation over the naturals
[true] | = | 3 | |
[if (x1, x2, x3) ] | = | 2 x1 + x2 | |
[false] | = | 1 | |
[lt (x1, x2) ] | = | 2 x1 + x2 + 2 | |
[- (x1, x2) ] | = | x1 | |
[s (x1) ] | = | 2 x1 + 2 | |
[0] | = | 0 | |
[div (x1, x2) ] | = | 2 x1 | |
[-# (x1, x2) ] | = | 3 x1 + 3 x2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
lt#( s( x ) , s( y ) ) | → | lt#( x , y ) |
Linear polynomial interpretation over the naturals
[true] | = | 3 | |
[if (x1, x2, x3) ] | = | 2 x1 + x2 | |
[false] | = | 1 | |
[lt (x1, x2) ] | = | 2 x1 + x2 + 2 | |
[- (x1, x2) ] | = | x1 | |
[s (x1) ] | = | 2 x1 + 2 | |
[0] | = | 0 | |
[lt# (x1, x2) ] | = | 3 x1 + 3 x2 | |
[div (x1, x2) ] | = | 2 x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.