| -#( s( x ) , s( y ) ) | → | -#( x , y ) |
| lt#( s( x ) , s( y ) ) | → | lt#( x , y ) |
| div#( s( x ) , s( y ) ) | → | if#( lt( x , y ) , 0 , s( div( -( x , y ) , s( y ) ) ) ) |
| div#( s( x ) , s( y ) ) | → | lt#( x , y ) |
| div#( s( x ) , s( y ) ) | → | div#( -( x , y ) , s( y ) ) |
| div#( s( x ) , s( y ) ) | → | -#( x , y ) |
The dependency pairs are split into 3 component(s).
| div#( s( x ) , s( y ) ) | → | div#( -( x , y ) , s( y ) ) |
Linear polynomial interpretation over the naturals
| [true] | = | 0 | |
| [if (x1, x2, x3) ] | = | x1 + x2 | |
| [false] | = | 0 | |
| [lt (x1, x2) ] | = | 1 | |
| [- (x1, x2) ] | = | x1 | |
| [s (x1) ] | = | x1 + 2 | |
| [0] | = | 0 | |
| [div# (x1, x2) ] | = | x1 | |
| [div (x1, x2) ] | = | x1 + 2 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.
| -#( s( x ) , s( y ) ) | → | -#( x , y ) |
Linear polynomial interpretation over the naturals
| [true] | = | 3 | |
| [if (x1, x2, x3) ] | = | 2 x1 + x2 | |
| [false] | = | 1 | |
| [lt (x1, x2) ] | = | 2 x1 + x2 + 2 | |
| [- (x1, x2) ] | = | x1 | |
| [s (x1) ] | = | 2 x1 + 2 | |
| [0] | = | 0 | |
| [div (x1, x2) ] | = | 2 x1 | |
| [-# (x1, x2) ] | = | 3 x1 + 3 x2 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.
| lt#( s( x ) , s( y ) ) | → | lt#( x , y ) |
Linear polynomial interpretation over the naturals
| [true] | = | 3 | |
| [if (x1, x2, x3) ] | = | 2 x1 + x2 | |
| [false] | = | 1 | |
| [lt (x1, x2) ] | = | 2 x1 + x2 + 2 | |
| [- (x1, x2) ] | = | x1 | |
| [s (x1) ] | = | 2 x1 + 2 | |
| [0] | = | 0 | |
| [lt# (x1, x2) ] | = | 3 x1 + 3 x2 | |
| [div (x1, x2) ] | = | 2 x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.