Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _0_1 : symb | add : symb | append : symb | f_1 : symb | f_2 : symb | f_3 : symb | false : symb | lt : symb | nil : symb | pair : symb | qsort : symb | s : symb | split : symb | true : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._0_1 => 0 | M.add => 2 | M.append => 2 | M.f_1 => 4 | M.f_2 => 6 | M.f_3 => 3 | M.false => 0 | M.lt => 2 | M.nil => 0 | M.pair => 2 | M.qsort => 1 | M.s => 1 | M.split => 2 | M.true => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _0_1 := F0 M._0_1 Vnil. Definition add x2 x1 := F0 M.add (Vcons x2 (Vcons x1 Vnil)). Definition append x2 x1 := F0 M.append (Vcons x2 (Vcons x1 Vnil)). Definition f_1 x4 x3 x2 x1 := F0 M.f_1 (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition f_2 x6 x5 x4 x3 x2 x1 := F0 M.f_2 (Vcons x6 (Vcons x5 (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))))). Definition f_3 x3 x2 x1 := F0 M.f_3 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition false := F0 M.false Vnil. Definition lt x2 x1 := F0 M.lt (Vcons x2 (Vcons x1 Vnil)). Definition nil := F0 M.nil Vnil. Definition pair x2 x1 := F0 M.pair (Vcons x2 (Vcons x1 Vnil)). Definition qsort x1 := F0 M.qsort (Vcons x1 Vnil). Definition s x1 := F0 M.s (Vcons x1 Vnil). Definition split x2 x1 := F0 M.split (Vcons x2 (Vcons x1 Vnil)). Definition true := F0 M.true Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.lt S0._0_1 (S0.s (V0 0))) S0.true :: R0 (S0.lt (S0.s (V0 0)) S0._0_1) S0.false :: R0 (S0.lt (S0.s (V0 0)) (S0.s (V0 1))) (S0.lt (V0 0) (V0 1)) :: R0 (S0.append S0.nil (V0 0)) (V0 0) :: R0 (S0.append (S0.add (V0 0) (V0 1)) (V0 2)) (S0.add (V0 0) (S0.append (V0 1) (V0 2))) :: R0 (S0.split (V0 0) S0.nil) (S0.pair S0.nil S0.nil) :: R0 (S0.split (V0 0) (S0.add (V0 1) (V0 2))) (S0.f_1 (S0.split (V0 0) (V0 2)) (V0 0) (V0 1) (V0 2)) :: R0 (S0.f_1 (S0.pair (V0 0) (V0 1)) (V0 2) (V0 3) (V0 4)) (S0.f_2 (S0.lt (V0 2) (V0 3)) (V0 2) (V0 3) (V0 4) (V0 0) (V0 1)) :: R0 (S0.f_2 S0.true (V0 0) (V0 1) (V0 2) (V0 3) (V0 4)) (S0.pair (V0 3) (S0.add (V0 1) (V0 4))) :: R0 (S0.f_2 S0.false (V0 0) (V0 1) (V0 2) (V0 3) (V0 4)) (S0.pair (S0.add (V0 1) (V0 3)) (V0 4)) :: R0 (S0.qsort S0.nil) S0.nil :: R0 (S0.qsort (S0.add (V0 0) (V0 1))) (S0.f_3 (S0.split (V0 0) (V0 1)) (V0 0) (V0 1)) :: R0 (S0.f_3 (S0.pair (V0 0) (V0 1)) (V0 2) (V0 3)) (S0.append (S0.qsort (V0 0)) (S0.add (V0 3) (S0.qsort (V0 1)))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition hadd x2 x1 := F1 (hd_symb s1_p M.add) (Vcons x2 (Vcons x1 Vnil)). Definition add x2 x1 := F1 (int_symb s1_p M.add) (Vcons x2 (Vcons x1 Vnil)). Definition happend x2 x1 := F1 (hd_symb s1_p M.append) (Vcons x2 (Vcons x1 Vnil)). Definition append x2 x1 := F1 (int_symb s1_p M.append) (Vcons x2 (Vcons x1 Vnil)). Definition hf_1 x4 x3 x2 x1 := F1 (hd_symb s1_p M.f_1) (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition f_1 x4 x3 x2 x1 := F1 (int_symb s1_p M.f_1) (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition hf_2 x6 x5 x4 x3 x2 x1 := F1 (hd_symb s1_p M.f_2) (Vcons x6 (Vcons x5 (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))))). Definition f_2 x6 x5 x4 x3 x2 x1 := F1 (int_symb s1_p M.f_2) (Vcons x6 (Vcons x5 (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))))). Definition hf_3 x3 x2 x1 := F1 (hd_symb s1_p M.f_3) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition f_3 x3 x2 x1 := F1 (int_symb s1_p M.f_3) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition hfalse := F1 (hd_symb s1_p M.false) Vnil. Definition false := F1 (int_symb s1_p M.false) Vnil. Definition hlt x2 x1 := F1 (hd_symb s1_p M.lt) (Vcons x2 (Vcons x1 Vnil)). Definition lt x2 x1 := F1 (int_symb s1_p M.lt) (Vcons x2 (Vcons x1 Vnil)). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hpair x2 x1 := F1 (hd_symb s1_p M.pair) (Vcons x2 (Vcons x1 Vnil)). Definition pair x2 x1 := F1 (int_symb s1_p M.pair) (Vcons x2 (Vcons x1 Vnil)). Definition hqsort x1 := F1 (hd_symb s1_p M.qsort) (Vcons x1 Vnil). Definition qsort x1 := F1 (int_symb s1_p M.qsort) (Vcons x1 Vnil). Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). Definition hsplit x2 x1 := F1 (hd_symb s1_p M.split) (Vcons x2 (Vcons x1 Vnil)). Definition split x2 x1 := F1 (int_symb s1_p M.split) (Vcons x2 (Vcons x1 Vnil)). Definition htrue := F1 (hd_symb s1_p M.true) Vnil. Definition true := F1 (int_symb s1_p M.true) Vnil. End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hf_1 (S1.pair (V1 0) (V1 1)) (V1 2) (V1 3) (V1 4)) (S1.hf_2 (S1.lt (V1 2) (V1 3)) (V1 2) (V1 3) (V1 4) (V1 0) (V1 1)) :: nil) :: ( R1 (S1.happend (S1.add (V1 0) (V1 1)) (V1 2)) (S1.happend (V1 1) (V1 2)) :: nil) :: ( R1 (S1.hf_3 (S1.pair (V1 0) (V1 1)) (V1 2) (V1 3)) (S1.happend (S1.qsort (V1 0)) (S1.add (V1 3) (S1.qsort (V1 1)))) :: nil) :: ( R1 (S1.hlt (S1.s (V1 0)) (S1.s (V1 1))) (S1.hlt (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hf_1 (S1.pair (V1 0) (V1 1)) (V1 2) (V1 3) (V1 4)) (S1.hlt (V1 2) (V1 3)) :: nil) :: ( R1 (S1.hsplit (V1 0) (S1.add (V1 1) (V1 2))) (S1.hf_1 (S1.split (V1 0) (V1 2)) (V1 0) (V1 1) (V1 2)) :: nil) :: ( R1 (S1.hsplit (V1 0) (S1.add (V1 1) (V1 2))) (S1.hsplit (V1 0) (V1 2)) :: nil) :: ( R1 (S1.hqsort (S1.add (V1 0) (V1 1))) (S1.hsplit (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hqsort (S1.add (V1 0) (V1 1))) (S1.hf_3 (S1.split (V1 0) (V1 1)) (V1 0) (V1 1)) :: R1 (S1.hf_3 (S1.pair (V1 0) (V1 1)) (V1 2) (V1 3)) (S1.hqsort (V1 0)) :: R1 (S1.hf_3 (S1.pair (V1 0) (V1 1)) (V1 2) (V1 3)) (S1.hqsort (V1 1)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.lt) => nil | (int_symb M.lt) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.s) => nil | (int_symb M.s) => nil | (hd_symb M.true) => nil | (int_symb M.true) => (2%Z, Vnil) :: nil | (hd_symb M.false) => nil | (int_symb M.false) => (2%Z, Vnil) :: nil | (hd_symb M.append) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.append) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.add) => nil | (int_symb M.add) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.split) => nil | (int_symb M.split) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.pair) => nil | (int_symb M.pair) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.f_1) => nil | (int_symb M.f_1) => (2%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: nil | (hd_symb M.f_2) => nil | (int_symb M.f_2) => (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 1 (Vcons 0 Vnil))))))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 1 Vnil))))))) :: nil | (hd_symb M.qsort) => nil | (int_symb M.qsort) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.f_3) => nil | (int_symb M.f_3) => (2%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.lt) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.lt) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => (1%Z, Vnil) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.false) => nil | (int_symb M.false) => nil | (hd_symb M.append) => nil | (int_symb M.append) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.add) => nil | (int_symb M.add) => nil | (hd_symb M.split) => nil | (int_symb M.split) => nil | (hd_symb M.pair) => nil | (int_symb M.pair) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.f_1) => nil | (int_symb M.f_1) => (3%Z, (Vcons 1 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: nil | (hd_symb M.f_2) => nil | (int_symb M.f_2) => (3%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 1 (Vcons 0 Vnil))))))) :: (2%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 1 Vnil))))))) :: nil | (hd_symb M.qsort) => nil | (int_symb M.qsort) => nil | (hd_symb M.f_3) => nil | (int_symb M.f_3) => (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* polynomial interpretation 3 *) Module PIS3 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.lt) => nil | (int_symb M.lt) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.s) => nil | (int_symb M.s) => nil | (hd_symb M.true) => nil | (int_symb M.true) => (2%Z, Vnil) :: nil | (hd_symb M.false) => nil | (int_symb M.false) => (2%Z, Vnil) :: nil | (hd_symb M.append) => nil | (int_symb M.append) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.add) => nil | (int_symb M.add) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.split) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.split) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.pair) => nil | (int_symb M.pair) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.f_1) => nil | (int_symb M.f_1) => (2%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: nil | (hd_symb M.f_2) => nil | (int_symb M.f_2) => (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 1 (Vcons 0 Vnil))))))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 1 Vnil))))))) :: nil | (hd_symb M.qsort) => nil | (int_symb M.qsort) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.f_3) => nil | (int_symb M.f_3) => (2%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS3. Module PI3 := PolyInt PIS3. (* polynomial interpretation 4 *) Module PIS4 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.lt) => nil | (int_symb M.lt) => nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.s) => nil | (int_symb M.s) => nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.false) => nil | (int_symb M.false) => nil | (hd_symb M.append) => nil | (int_symb M.append) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.add) => nil | (int_symb M.add) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.split) => nil | (int_symb M.split) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.pair) => nil | (int_symb M.pair) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.f_1) => nil | (int_symb M.f_1) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: nil | (hd_symb M.f_2) => nil | (int_symb M.f_2) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 1 (Vcons 0 Vnil))))))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 1 Vnil))))))) :: nil | (hd_symb M.qsort) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.qsort) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.f_3) => (2%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (int_symb M.f_3) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS4. Module PI4 := PolyInt PIS4. (* graph decomposition 2 *) Definition cs2 : list (list (@ATrs.rule s1)) := ( R1 (S1.hqsort (S1.add (V1 0) (V1 1))) (S1.hf_3 (S1.split (V1 0) (V1 1)) (V1 0) (V1 1)) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI1.prove_termination. termination_trivial. left. co_scc. right. PI2.prove_termination. termination_trivial. left. co_scc. left. co_scc. right. PI3.prove_termination. termination_trivial. left. co_scc. right. PI4.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs2; subst D; subst R. dpg_unif_N_correct. left. co_scc. Qed.