minus#( X , s( Y ) ) | → | pred#( minus( X , Y ) ) |
minus#( X , s( Y ) ) | → | minus#( X , Y ) |
le#( s( X ) , s( Y ) ) | → | le#( X , Y ) |
gcd#( s( X ) , s( Y ) ) | → | if#( le( Y , X ) , s( X ) , s( Y ) ) |
gcd#( s( X ) , s( Y ) ) | → | le#( Y , X ) |
if#( true , s( X ) , s( Y ) ) | → | gcd#( minus( X , Y ) , s( Y ) ) |
if#( true , s( X ) , s( Y ) ) | → | minus#( X , Y ) |
if#( false , s( X ) , s( Y ) ) | → | gcd#( minus( Y , X ) , s( X ) ) |
if#( false , s( X ) , s( Y ) ) | → | minus#( Y , X ) |
The dependency pairs are split into 3 component(s).
if#( true , s( X ) , s( Y ) ) | → | gcd#( minus( X , Y ) , s( Y ) ) |
gcd#( s( X ) , s( Y ) ) | → | if#( le( Y , X ) , s( X ) , s( Y ) ) |
if#( false , s( X ) , s( Y ) ) | → | gcd#( minus( Y , X ) , s( X ) ) |
Linear polynomial interpretation over the naturals
[true] | = | 0 | |
[minus (x1, x2) ] | = | x1 | |
[if (x1, x2, x3) ] | = | x1 + x2 | |
[gcd# (x1, x2) ] | = | 2 x1 + x2 | |
[false] | = | 1 | |
[if# (x1, x2, x3) ] | = | 2 x1 + x2 + x3 | |
[s (x1) ] | = | 2 x1 | |
[0] | = | 1 | |
[le (x1, x2) ] | = | x1 | |
[gcd (x1, x2) ] | = | 2 x1 + x2 | |
[pred (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
if#( true , s( X ) , s( Y ) ) | → | gcd#( minus( X , Y ) , s( Y ) ) |
gcd#( s( X ) , s( Y ) ) | → | if#( le( Y , X ) , s( X ) , s( Y ) ) |
Linear polynomial interpretation over the naturals
[true] | = | 0 | |
[minus (x1, x2) ] | = | x1 | |
[if (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 2 | |
[gcd# (x1, x2) ] | = | 3 x1 + 3 x2 + 3 | |
[false] | = | 0 | |
[if# (x1, x2, x3) ] | = | 3 x1 + 3 x2 | |
[s (x1) ] | = | x1 + 3 | |
[0] | = | 1 | |
[le (x1, x2) ] | = | x1 | |
[gcd (x1, x2) ] | = | 2 x1 + 2 x2 + 2 | |
[pred (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
minus#( X , s( Y ) ) | → | minus#( X , Y ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | x1 | |
[true] | = | 0 | |
[if (x1, x2, x3) ] | = | x1 + x2 | |
[false] | = | 0 | |
[s (x1) ] | = | 2 x1 + 2 | |
[0] | = | 0 | |
[le (x1, x2) ] | = | x1 | |
[gcd (x1, x2) ] | = | x1 + x2 | |
[pred (x1) ] | = | x1 | |
[minus# (x1, x2) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
le#( s( X ) , s( Y ) ) | → | le#( X , Y ) |
Linear polynomial interpretation over the naturals
[minus (x1, x2) ] | = | x1 | |
[true] | = | 2 | |
[if (x1, x2, x3) ] | = | x1 + x2 | |
[false] | = | 2 | |
[le# (x1, x2) ] | = | x1 | |
[s (x1) ] | = | 2 x1 + 2 | |
[0] | = | 0 | |
[le (x1, x2) ] | = | 3 x1 + 2 | |
[gcd (x1, x2) ] | = | x1 + x2 | |
[pred (x1) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.