din#( der( plus( X , Y ) ) ) | → | u21#( din( der( X ) ) , X , Y ) |
din#( der( plus( X , Y ) ) ) | → | din#( der( X ) ) |
u21#( dout( DX ) , X , Y ) | → | u22#( din( der( Y ) ) , X , Y , DX ) |
u21#( dout( DX ) , X , Y ) | → | din#( der( Y ) ) |
din#( der( times( X , Y ) ) ) | → | u31#( din( der( X ) ) , X , Y ) |
din#( der( times( X , Y ) ) ) | → | din#( der( X ) ) |
u31#( dout( DX ) , X , Y ) | → | u32#( din( der( Y ) ) , X , Y , DX ) |
u31#( dout( DX ) , X , Y ) | → | din#( der( Y ) ) |
din#( der( der( X ) ) ) | → | u41#( din( der( X ) ) , X ) |
din#( der( der( X ) ) ) | → | din#( der( X ) ) |
u41#( dout( DX ) , X ) | → | u42#( din( der( DX ) ) , X , DX ) |
u41#( dout( DX ) , X ) | → | din#( der( DX ) ) |
The dependency pairs are split into 1 component(s).
u21#( dout( DX ) , X , Y ) | → | din#( der( Y ) ) |
din#( der( plus( X , Y ) ) ) | → | u21#( din( der( X ) ) , X , Y ) |
din#( der( plus( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( times( X , Y ) ) ) | → | u31#( din( der( X ) ) , X , Y ) |
u31#( dout( DX ) , X , Y ) | → | din#( der( Y ) ) |
din#( der( times( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( der( X ) ) ) | → | u41#( din( der( X ) ) , X ) |
u41#( dout( DX ) , X ) | → | din#( der( DX ) ) |
din#( der( der( X ) ) ) | → | din#( der( X ) ) |
Linear polynomial interpretation over the naturals
[u31# (x1, x2, x3) ] | = | 0 | |
[u41 (x1, x2) ] | = | 2 x1 | |
[u41# (x1, x2) ] | = | 0 | |
[u21# (x1, x2, x3) ] | = | 2 x1 | |
[u31 (x1, x2, x3) ] | = | 2 x1 | |
[u32 (x1, ..., x4) ] | = | x1 | |
[times (x1, x2) ] | = | 0 | |
[u42 (x1, x2, x3) ] | = | 3 x1 + 3 | |
[u21 (x1, x2, x3) ] | = | 2 x1 | |
[u22 (x1, ..., x4) ] | = | 3 x1 + 3 | |
[plus (x1, x2) ] | = | 0 | |
[din (x1) ] | = | 0 | |
[din# (x1) ] | = | 0 | |
[dout (x1) ] | = | 2 | |
[der (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
din#( der( plus( X , Y ) ) ) | → | u21#( din( der( X ) ) , X , Y ) |
din#( der( plus( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( times( X , Y ) ) ) | → | u31#( din( der( X ) ) , X , Y ) |
u31#( dout( DX ) , X , Y ) | → | din#( der( Y ) ) |
din#( der( times( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( der( X ) ) ) | → | u41#( din( der( X ) ) , X ) |
u41#( dout( DX ) , X ) | → | din#( der( DX ) ) |
din#( der( der( X ) ) ) | → | din#( der( X ) ) |
The dependency pairs are split into 1 component(s).
din#( der( times( X , Y ) ) ) | → | u31#( din( der( X ) ) , X , Y ) |
u31#( dout( DX ) , X , Y ) | → | din#( der( Y ) ) |
din#( der( plus( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( times( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( der( X ) ) ) | → | u41#( din( der( X ) ) , X ) |
u41#( dout( DX ) , X ) | → | din#( der( DX ) ) |
din#( der( der( X ) ) ) | → | din#( der( X ) ) |
Linear polynomial interpretation over the naturals
[u31# (x1, x2, x3) ] | = | x1 | |
[u41 (x1, x2) ] | = | 2 x1 | |
[u41# (x1, x2) ] | = | 0 | |
[u31 (x1, x2, x3) ] | = | 3 x1 | |
[u32 (x1, ..., x4) ] | = | 3 x1 + 3 x2 | |
[times (x1, x2) ] | = | 0 | |
[u42 (x1, x2, x3) ] | = | 2 x1 + x2 + 1 | |
[u21 (x1, x2, x3) ] | = | 2 x1 | |
[u22 (x1, ..., x4) ] | = | 3 x1 + x2 + 2 | |
[din (x1) ] | = | 0 | |
[plus (x1, x2) ] | = | 3 | |
[din# (x1) ] | = | 0 | |
[dout (x1) ] | = | x1 + 2 | |
[der (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
din#( der( times( X , Y ) ) ) | → | u31#( din( der( X ) ) , X , Y ) |
din#( der( plus( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( times( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( der( X ) ) ) | → | u41#( din( der( X ) ) , X ) |
u41#( dout( DX ) , X ) | → | din#( der( DX ) ) |
din#( der( der( X ) ) ) | → | din#( der( X ) ) |
The dependency pairs are split into 1 component(s).
din#( der( times( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( plus( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( der( X ) ) ) | → | u41#( din( der( X ) ) , X ) |
u41#( dout( DX ) , X ) | → | din#( der( DX ) ) |
din#( der( der( X ) ) ) | → | din#( der( X ) ) |
Linear polynomial interpretation over the naturals
[u41 (x1, x2) ] | = | 0 | |
[u41# (x1, x2) ] | = | 2 x1 | |
[u31 (x1, x2, x3) ] | = | 0 | |
[u32 (x1, ..., x4) ] | = | 3 x1 | |
[times (x1, x2) ] | = | 0 | |
[u42 (x1, x2, x3) ] | = | x1 | |
[u21 (x1, x2, x3) ] | = | 3 x1 | |
[u22 (x1, ..., x4) ] | = | 2 x1 + 2 | |
[plus (x1, x2) ] | = | 0 | |
[din (x1) ] | = | 0 | |
[din# (x1) ] | = | 0 | |
[dout (x1) ] | = | 3 | |
[der (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
din#( der( times( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( plus( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( der( X ) ) ) | → | u41#( din( der( X ) ) , X ) |
din#( der( der( X ) ) ) | → | din#( der( X ) ) |
The dependency pairs are split into 1 component(s).
din#( der( plus( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( times( X , Y ) ) ) | → | din#( der( X ) ) |
din#( der( der( X ) ) ) | → | din#( der( X ) ) |
Linear polynomial interpretation over the naturals
[u21 (x1, x2, x3) ] | = | 0 | |
[u41 (x1, x2) ] | = | 0 | |
[u22 (x1, ..., x4) ] | = | 0 | |
[plus (x1, x2) ] | = | x1 + 3 | |
[din (x1) ] | = | 2 | |
[din# (x1) ] | = | 2 x1 | |
[u31 (x1, x2, x3) ] | = | 1 | |
[u32 (x1, ..., x4) ] | = | 0 | |
[times (x1, x2) ] | = | x1 + 3 | |
[dout (x1) ] | = | 0 | |
[der (x1) ] | = | 2 x1 | |
[u42 (x1, x2, x3) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
din#( der( der( X ) ) ) | → | din#( der( X ) ) |
Linear polynomial interpretation over the naturals
[u21 (x1, x2, x3) ] | = | 2 | |
[u41 (x1, x2) ] | = | 2 | |
[u22 (x1, ..., x4) ] | = | 0 | |
[din (x1) ] | = | 2 | |
[plus (x1, x2) ] | = | 0 | |
[din# (x1) ] | = | x1 | |
[u31 (x1, x2, x3) ] | = | x1 | |
[u32 (x1, ..., x4) ] | = | 0 | |
[dout (x1) ] | = | x1 | |
[times (x1, x2) ] | = | 0 | |
[der (x1) ] | = | x1 + 1 | |
[u42 (x1, x2, x3) ] | = | x1 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.