Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | der : symb | din : symb | dout : symb | plus : symb | times : symb | u21 : symb | u22 : symb | u31 : symb | u32 : symb | u41 : symb | u42 : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.der => 1 | M.din => 1 | M.dout => 1 | M.plus => 2 | M.times => 2 | M.u21 => 3 | M.u22 => 4 | M.u31 => 3 | M.u32 => 4 | M.u41 => 2 | M.u42 => 3 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition der x1 := F0 M.der (Vcons x1 Vnil). Definition din x1 := F0 M.din (Vcons x1 Vnil). Definition dout x1 := F0 M.dout (Vcons x1 Vnil). Definition plus x2 x1 := F0 M.plus (Vcons x2 (Vcons x1 Vnil)). Definition times x2 x1 := F0 M.times (Vcons x2 (Vcons x1 Vnil)). Definition u21 x3 x2 x1 := F0 M.u21 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition u22 x4 x3 x2 x1 := F0 M.u22 (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition u31 x3 x2 x1 := F0 M.u31 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition u32 x4 x3 x2 x1 := F0 M.u32 (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition u41 x2 x1 := F0 M.u41 (Vcons x2 (Vcons x1 Vnil)). Definition u42 x3 x2 x1 := F0 M.u42 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.din (S0.der (S0.plus (V0 0) (V0 1)))) (S0.u21 (S0.din (S0.der (V0 0))) (V0 0) (V0 1)) :: R0 (S0.u21 (S0.dout (V0 0)) (V0 1) (V0 2)) (S0.u22 (S0.din (S0.der (V0 2))) (V0 1) (V0 2) (V0 0)) :: R0 (S0.u22 (S0.dout (V0 0)) (V0 1) (V0 2) (V0 3)) (S0.dout (S0.plus (V0 3) (V0 0))) :: R0 (S0.din (S0.der (S0.times (V0 0) (V0 1)))) (S0.u31 (S0.din (S0.der (V0 0))) (V0 0) (V0 1)) :: R0 (S0.u31 (S0.dout (V0 0)) (V0 1) (V0 2)) (S0.u32 (S0.din (S0.der (V0 2))) (V0 1) (V0 2) (V0 0)) :: R0 (S0.u32 (S0.dout (V0 0)) (V0 1) (V0 2) (V0 3)) (S0.dout (S0.plus (S0.times (V0 1) (V0 0)) (S0.times (V0 2) (V0 3)))) :: R0 (S0.din (S0.der (S0.der (V0 0)))) (S0.u41 (S0.din (S0.der (V0 0))) (V0 0)) :: R0 (S0.u41 (S0.dout (V0 0)) (V0 1)) (S0.u42 (S0.din (S0.der (V0 0))) (V0 1) (V0 0)) :: R0 (S0.u42 (S0.dout (V0 0)) (V0 1) (V0 2)) (S0.dout (V0 0)) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition hder x1 := F1 (hd_symb s1_p M.der) (Vcons x1 Vnil). Definition der x1 := F1 (int_symb s1_p M.der) (Vcons x1 Vnil). Definition hdin x1 := F1 (hd_symb s1_p M.din) (Vcons x1 Vnil). Definition din x1 := F1 (int_symb s1_p M.din) (Vcons x1 Vnil). Definition hdout x1 := F1 (hd_symb s1_p M.dout) (Vcons x1 Vnil). Definition dout x1 := F1 (int_symb s1_p M.dout) (Vcons x1 Vnil). Definition hplus x2 x1 := F1 (hd_symb s1_p M.plus) (Vcons x2 (Vcons x1 Vnil)). Definition plus x2 x1 := F1 (int_symb s1_p M.plus) (Vcons x2 (Vcons x1 Vnil)). Definition htimes x2 x1 := F1 (hd_symb s1_p M.times) (Vcons x2 (Vcons x1 Vnil)). Definition times x2 x1 := F1 (int_symb s1_p M.times) (Vcons x2 (Vcons x1 Vnil)). Definition hu21 x3 x2 x1 := F1 (hd_symb s1_p M.u21) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition u21 x3 x2 x1 := F1 (int_symb s1_p M.u21) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition hu22 x4 x3 x2 x1 := F1 (hd_symb s1_p M.u22) (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition u22 x4 x3 x2 x1 := F1 (int_symb s1_p M.u22) (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition hu31 x3 x2 x1 := F1 (hd_symb s1_p M.u31) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition u31 x3 x2 x1 := F1 (int_symb s1_p M.u31) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition hu32 x4 x3 x2 x1 := F1 (hd_symb s1_p M.u32) (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition u32 x4 x3 x2 x1 := F1 (int_symb s1_p M.u32) (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition hu41 x2 x1 := F1 (hd_symb s1_p M.u41) (Vcons x2 (Vcons x1 Vnil)). Definition u41 x2 x1 := F1 (int_symb s1_p M.u41) (Vcons x2 (Vcons x1 Vnil)). Definition hu42 x3 x2 x1 := F1 (hd_symb s1_p M.u42) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition u42 x3 x2 x1 := F1 (int_symb s1_p M.u42) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hu41 (S1.dout (V1 0)) (V1 1)) (S1.hu42 (S1.din (S1.der (V1 0))) (V1 1) (V1 0)) :: nil) :: ( R1 (S1.hu31 (S1.dout (V1 0)) (V1 1) (V1 2)) (S1.hu32 (S1.din (S1.der (V1 2))) (V1 1) (V1 2) (V1 0)) :: nil) :: ( R1 (S1.hu21 (S1.dout (V1 0)) (V1 1) (V1 2)) (S1.hu22 (S1.din (S1.der (V1 2))) (V1 1) (V1 2) (V1 0)) :: nil) :: ( R1 (S1.hu21 (S1.dout (V1 0)) (V1 1) (V1 2)) (S1.hdin (S1.der (V1 2))) :: R1 (S1.hdin (S1.der (S1.plus (V1 0) (V1 1)))) (S1.hu21 (S1.din (S1.der (V1 0))) (V1 0) (V1 1)) :: R1 (S1.hdin (S1.der (S1.plus (V1 0) (V1 1)))) (S1.hdin (S1.der (V1 0))) :: R1 (S1.hdin (S1.der (S1.times (V1 0) (V1 1)))) (S1.hu31 (S1.din (S1.der (V1 0))) (V1 0) (V1 1)) :: R1 (S1.hu31 (S1.dout (V1 0)) (V1 1) (V1 2)) (S1.hdin (S1.der (V1 2))) :: R1 (S1.hdin (S1.der (S1.times (V1 0) (V1 1)))) (S1.hdin (S1.der (V1 0))) :: R1 (S1.hdin (S1.der (S1.der (V1 0)))) (S1.hu41 (S1.din (S1.der (V1 0))) (V1 0)) :: R1 (S1.hu41 (S1.dout (V1 0)) (V1 1)) (S1.hdin (S1.der (V1 0))) :: R1 (S1.hdin (S1.der (S1.der (V1 0)))) (S1.hdin (S1.der (V1 0))) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.din) => nil | (int_symb M.din) => nil | (hd_symb M.der) => nil | (int_symb M.der) => nil | (hd_symb M.plus) => nil | (int_symb M.plus) => nil | (hd_symb M.u21) => (2%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (int_symb M.u21) => (2%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (hd_symb M.dout) => nil | (int_symb M.dout) => (2%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.u22) => nil | (int_symb M.u22) => (3%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: (3%Z, (Vcons 1 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: nil | (hd_symb M.times) => nil | (int_symb M.times) => nil | (hd_symb M.u31) => nil | (int_symb M.u31) => (2%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (hd_symb M.u32) => nil | (int_symb M.u32) => (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: nil | (hd_symb M.u41) => nil | (int_symb M.u41) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.u42) => nil | (int_symb M.u42) => (3%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (3%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* graph decomposition 2 *) Definition cs2 : list (list (@ATrs.rule s1)) := ( R1 (S1.hdin (S1.der (S1.plus (V1 0) (V1 1)))) (S1.hu21 (S1.din (S1.der (V1 0))) (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hdin (S1.der (S1.times (V1 0) (V1 1)))) (S1.hu31 (S1.din (S1.der (V1 0))) (V1 0) (V1 1)) :: R1 (S1.hu31 (S1.dout (V1 0)) (V1 1) (V1 2)) (S1.hdin (S1.der (V1 2))) :: R1 (S1.hdin (S1.der (S1.plus (V1 0) (V1 1)))) (S1.hdin (S1.der (V1 0))) :: R1 (S1.hdin (S1.der (S1.times (V1 0) (V1 1)))) (S1.hdin (S1.der (V1 0))) :: R1 (S1.hdin (S1.der (S1.der (V1 0)))) (S1.hu41 (S1.din (S1.der (V1 0))) (V1 0)) :: R1 (S1.hu41 (S1.dout (V1 0)) (V1 1)) (S1.hdin (S1.der (V1 0))) :: R1 (S1.hdin (S1.der (S1.der (V1 0)))) (S1.hdin (S1.der (V1 0))) :: nil) :: nil. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.din) => nil | (int_symb M.din) => nil | (hd_symb M.der) => nil | (int_symb M.der) => nil | (hd_symb M.plus) => nil | (int_symb M.plus) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: nil | (hd_symb M.u21) => nil | (int_symb M.u21) => (2%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (hd_symb M.dout) => nil | (int_symb M.dout) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.u22) => nil | (int_symb M.u22) => (2%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: (3%Z, (Vcons 1 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 1 Vnil))))) :: nil | (hd_symb M.times) => nil | (int_symb M.times) => nil | (hd_symb M.u31) => (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (int_symb M.u31) => (3%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (hd_symb M.u32) => nil | (int_symb M.u32) => (3%Z, (Vcons 1 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: (3%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 1 Vnil))))) :: nil | (hd_symb M.u41) => nil | (int_symb M.u41) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.u42) => nil | (int_symb M.u42) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* graph decomposition 3 *) Definition cs3 : list (list (@ATrs.rule s1)) := ( R1 (S1.hdin (S1.der (S1.times (V1 0) (V1 1)))) (S1.hu31 (S1.din (S1.der (V1 0))) (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hdin (S1.der (S1.times (V1 0) (V1 1)))) (S1.hdin (S1.der (V1 0))) :: R1 (S1.hdin (S1.der (S1.plus (V1 0) (V1 1)))) (S1.hdin (S1.der (V1 0))) :: R1 (S1.hdin (S1.der (S1.der (V1 0)))) (S1.hu41 (S1.din (S1.der (V1 0))) (V1 0)) :: R1 (S1.hu41 (S1.dout (V1 0)) (V1 1)) (S1.hdin (S1.der (V1 0))) :: R1 (S1.hdin (S1.der (S1.der (V1 0)))) (S1.hdin (S1.der (V1 0))) :: nil) :: nil. (* polynomial interpretation 3 *) Module PIS3 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.din) => nil | (int_symb M.din) => nil | (hd_symb M.der) => nil | (int_symb M.der) => nil | (hd_symb M.plus) => nil | (int_symb M.plus) => nil | (hd_symb M.u21) => nil | (int_symb M.u21) => (3%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (hd_symb M.dout) => nil | (int_symb M.dout) => (3%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.u22) => nil | (int_symb M.u22) => (2%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: (2%Z, (Vcons 1 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: nil | (hd_symb M.times) => nil | (int_symb M.times) => nil | (hd_symb M.u31) => nil | (int_symb M.u31) => nil | (hd_symb M.u32) => nil | (int_symb M.u32) => (3%Z, (Vcons 1 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: nil | (hd_symb M.u41) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.u41) => nil | (hd_symb M.u42) => nil | (int_symb M.u42) => (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS3. Module PI3 := PolyInt PIS3. (* graph decomposition 4 *) Definition cs4 : list (list (@ATrs.rule s1)) := ( R1 (S1.hdin (S1.der (S1.der (V1 0)))) (S1.hu41 (S1.din (S1.der (V1 0))) (V1 0)) :: nil) :: ( R1 (S1.hdin (S1.der (S1.plus (V1 0) (V1 1)))) (S1.hdin (S1.der (V1 0))) :: R1 (S1.hdin (S1.der (S1.times (V1 0) (V1 1)))) (S1.hdin (S1.der (V1 0))) :: R1 (S1.hdin (S1.der (S1.der (V1 0)))) (S1.hdin (S1.der (V1 0))) :: nil) :: nil. (* polynomial interpretation 4 *) Module PIS4 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.din) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.din) => (2%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.der) => nil | (int_symb M.der) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.plus) => nil | (int_symb M.plus) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.u21) => nil | (int_symb M.u21) => nil | (hd_symb M.dout) => nil | (int_symb M.dout) => nil | (hd_symb M.u22) => nil | (int_symb M.u22) => nil | (hd_symb M.times) => nil | (int_symb M.times) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.u31) => nil | (int_symb M.u31) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (hd_symb M.u32) => nil | (int_symb M.u32) => nil | (hd_symb M.u41) => nil | (int_symb M.u41) => nil | (hd_symb M.u42) => nil | (int_symb M.u42) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS4. Module PI4 := PolyInt PIS4. (* polynomial interpretation 5 *) Module PIS5 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.din) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.din) => (2%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.der) => nil | (int_symb M.der) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.plus) => nil | (int_symb M.plus) => nil | (hd_symb M.u21) => nil | (int_symb M.u21) => (2%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (hd_symb M.dout) => nil | (int_symb M.dout) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.u22) => nil | (int_symb M.u22) => nil | (hd_symb M.times) => nil | (int_symb M.times) => nil | (hd_symb M.u31) => nil | (int_symb M.u31) => (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (hd_symb M.u32) => nil | (int_symb M.u32) => nil | (hd_symb M.u41) => nil | (int_symb M.u41) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: nil | (hd_symb M.u42) => nil | (int_symb M.u42) => (1%Z, (Vcons 1 (Vcons 0 (Vcons 0 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS5. Module PI5 := PolyInt PIS5. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. left. co_scc. right. PI1.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs2; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI2.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs3; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI3.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs4; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI4.prove_termination. PI5.prove_termination. termination_trivial. Qed.