Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _plus__1 : symb | a : symb | b : symb | f : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._plus__1 => 2 | M.a => 0 | M.b => 0 | M.f => 2 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _plus__1 x2 x1 := F0 M._plus__1 (Vcons x2 (Vcons x1 Vnil)). Definition a := F0 M.a Vnil. Definition b := F0 M.b Vnil. Definition f x2 x1 := F0 M.f (Vcons x2 (Vcons x1 Vnil)). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0._plus__1 S0.a S0.b) (S0._plus__1 S0.b S0.a) :: R0 (S0._plus__1 S0.a (S0._plus__1 S0.b (V0 0))) (S0._plus__1 S0.b (S0._plus__1 S0.a (V0 0))) :: R0 (S0._plus__1 (S0._plus__1 (V0 0) (V0 1)) (V0 2)) (S0._plus__1 (V0 0) (S0._plus__1 (V0 1) (V0 2))) :: R0 (S0.f S0.a (V0 0)) S0.a :: R0 (S0.f S0.b (V0 0)) S0.b :: R0 (S0.f (S0._plus__1 (V0 0) (V0 1)) (V0 2)) (S0._plus__1 (S0.f (V0 0) (V0 2)) (S0.f (V0 1) (V0 2))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_plus__1 x2 x1 := F1 (hd_symb s1_p M._plus__1) (Vcons x2 (Vcons x1 Vnil)). Definition _plus__1 x2 x1 := F1 (int_symb s1_p M._plus__1) (Vcons x2 (Vcons x1 Vnil)). Definition ha := F1 (hd_symb s1_p M.a) Vnil. Definition a := F1 (int_symb s1_p M.a) Vnil. Definition hb := F1 (hd_symb s1_p M.b) Vnil. Definition b := F1 (int_symb s1_p M.b) Vnil. Definition hf x2 x1 := F1 (hd_symb s1_p M.f) (Vcons x2 (Vcons x1 Vnil)). Definition f x2 x1 := F1 (int_symb s1_p M.f) (Vcons x2 (Vcons x1 Vnil)). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.h_plus__1 (S1.a) (S1._plus__1 (S1.b) (V1 0))) (S1.h_plus__1 (S1.b) (S1._plus__1 (S1.a) (V1 0))) :: nil) :: ( R1 (S1.h_plus__1 (S1.a) (S1.b)) (S1.h_plus__1 (S1.b) (S1.a)) :: nil) :: ( R1 (S1.h_plus__1 (S1.a) (S1._plus__1 (S1.b) (V1 0))) (S1.h_plus__1 (S1.a) (V1 0)) :: nil) :: ( R1 (S1.h_plus__1 (S1._plus__1 (V1 0) (V1 1)) (V1 2)) (S1.h_plus__1 (V1 1) (V1 2)) :: R1 (S1.h_plus__1 (S1._plus__1 (V1 0) (V1 1)) (V1 2)) (S1.h_plus__1 (V1 0) (S1._plus__1 (V1 1) (V1 2))) :: nil) :: ( R1 (S1.hf (S1._plus__1 (V1 0) (V1 1)) (V1 2)) (S1.h_plus__1 (S1.f (V1 0) (V1 2)) (S1.f (V1 1) (V1 2))) :: nil) :: ( R1 (S1.hf (S1._plus__1 (V1 0) (V1 1)) (V1 2)) (S1.hf (V1 1) (V1 2)) :: R1 (S1.hf (S1._plus__1 (V1 0) (V1 1)) (V1 2)) (S1.hf (V1 0) (V1 2)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M._plus__1) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M._plus__1) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a) => nil | (int_symb M.a) => (2%Z, Vnil) :: nil | (hd_symb M.b) => nil | (int_symb M.b) => (2%Z, Vnil) :: nil | (hd_symb M.f) => nil | (int_symb M.f) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M._plus__1) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M._plus__1) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a) => nil | (int_symb M.a) => nil | (hd_symb M.b) => nil | (int_symb M.b) => nil | (hd_symb M.f) => nil | (int_symb M.f) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* polynomial interpretation 3 *) Module PIS3 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M._plus__1) => nil | (int_symb M._plus__1) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.a) => nil | (int_symb M.a) => nil | (hd_symb M.b) => nil | (int_symb M.b) => nil | (hd_symb M.f) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.f) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS3. Module PI3 := PolyInt PIS3. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. right. PI1.prove_termination. termination_trivial. right. PI2.prove_termination. termination_trivial. left. co_scc. right. PI3.prove_termination. termination_trivial. Qed.