Require terminaison. Require Relations. Require term. Require List. Require equational_theory. Require rpo_extension. Require equational_extension. Require closure_extension. Require term_extension. Require dp. Require Inclusion. Require or_ext_generated. Require ZArith. Require ring_extention. Require Zwf. Require Inverse_Image. Require matrix. Require more_list_extention. Import List. Import ZArith. Set Implicit Arguments. Module algebra. Module F <:term.Signature. Inductive symb : Set := (* id_prime *) | id_prime : symb (* id_divp *) | id_divp : symb (* id_prime1 *) | id_prime1 : symb (* id_false *) | id_false : symb (* id_rem *) | id_rem : symb (* id_and *) | id_and : symb (* id_0 *) | id_0 : symb (* id__equal_ *) | id__equal_ : symb (* id_true *) | id_true : symb (* id_s *) | id_s : symb (* id_not *) | id_not : symb . Definition symb_eq_bool (f1 f2:symb) : bool := match f1,f2 with | id_prime,id_prime => true | id_divp,id_divp => true | id_prime1,id_prime1 => true | id_false,id_false => true | id_rem,id_rem => true | id_and,id_and => true | id_0,id_0 => true | id__equal_,id__equal_ => true | id_true,id_true => true | id_s,id_s => true | id_not,id_not => true | _,_ => false end. (* Proof of decidability of equality over symb *) Definition symb_eq_bool_ok(f1 f2:symb) : match symb_eq_bool f1 f2 with | true => f1 = f2 | false => f1 <> f2 end. Proof. intros f1 f2. refine match f1 as u1,f2 as u2 return match symb_eq_bool u1 u2 return Prop with | true => u1 = u2 | false => u1 <> u2 end with | id_prime,id_prime => refl_equal _ | id_divp,id_divp => refl_equal _ | id_prime1,id_prime1 => refl_equal _ | id_false,id_false => refl_equal _ | id_rem,id_rem => refl_equal _ | id_and,id_and => refl_equal _ | id_0,id_0 => refl_equal _ | id__equal_,id__equal_ => refl_equal _ | id_true,id_true => refl_equal _ | id_s,id_s => refl_equal _ | id_not,id_not => refl_equal _ | _,_ => _ end;intros abs;discriminate. Defined. Definition arity (f:symb) := match f with | id_prime => term.Free 1 | id_divp => term.Free 2 | id_prime1 => term.Free 2 | id_false => term.Free 0 | id_rem => term.Free 2 | id_and => term.Free 2 | id_0 => term.Free 0 | id__equal_ => term.Free 2 | id_true => term.Free 0 | id_s => term.Free 1 | id_not => term.Free 1 end. Definition symb_order (f1 f2:symb) : bool := match f1,f2 with | id_prime,id_prime => true | id_prime,id_divp => false | id_prime,id_prime1 => false | id_prime,id_false => false | id_prime,id_rem => false | id_prime,id_and => false | id_prime,id_0 => false | id_prime,id__equal_ => false | id_prime,id_true => false | id_prime,id_s => false | id_prime,id_not => false | id_divp,id_prime => true | id_divp,id_divp => true | id_divp,id_prime1 => false | id_divp,id_false => false | id_divp,id_rem => false | id_divp,id_and => false | id_divp,id_0 => false | id_divp,id__equal_ => false | id_divp,id_true => false | id_divp,id_s => false | id_divp,id_not => false | id_prime1,id_prime => true | id_prime1,id_divp => true | id_prime1,id_prime1 => true | id_prime1,id_false => false | id_prime1,id_rem => false | id_prime1,id_and => false | id_prime1,id_0 => false | id_prime1,id__equal_ => false | id_prime1,id_true => false | id_prime1,id_s => false | id_prime1,id_not => false | id_false,id_prime => true | id_false,id_divp => true | id_false,id_prime1 => true | id_false,id_false => true | id_false,id_rem => false | id_false,id_and => false | id_false,id_0 => false | id_false,id__equal_ => false | id_false,id_true => false | id_false,id_s => false | id_false,id_not => false | id_rem,id_prime => true | id_rem,id_divp => true | id_rem,id_prime1 => true | id_rem,id_false => true | id_rem,id_rem => true | id_rem,id_and => false | id_rem,id_0 => false | id_rem,id__equal_ => false | id_rem,id_true => false | id_rem,id_s => false | id_rem,id_not => false | id_and,id_prime => true | id_and,id_divp => true | id_and,id_prime1 => true | id_and,id_false => true | id_and,id_rem => true | id_and,id_and => true | id_and,id_0 => false | id_and,id__equal_ => false | id_and,id_true => false | id_and,id_s => false | id_and,id_not => false | id_0,id_prime => true | id_0,id_divp => true | id_0,id_prime1 => true | id_0,id_false => true | id_0,id_rem => true | id_0,id_and => true | id_0,id_0 => true | id_0,id__equal_ => false | id_0,id_true => false | id_0,id_s => false | id_0,id_not => false | id__equal_,id_prime => true | id__equal_,id_divp => true | id__equal_,id_prime1 => true | id__equal_,id_false => true | id__equal_,id_rem => true | id__equal_,id_and => true | id__equal_,id_0 => true | id__equal_,id__equal_ => true | id__equal_,id_true => false | id__equal_,id_s => false | id__equal_,id_not => false | id_true,id_prime => true | id_true,id_divp => true | id_true,id_prime1 => true | id_true,id_false => true | id_true,id_rem => true | id_true,id_and => true | id_true,id_0 => true | id_true,id__equal_ => true | id_true,id_true => true | id_true,id_s => false | id_true,id_not => false | id_s,id_prime => true | id_s,id_divp => true | id_s,id_prime1 => true | id_s,id_false => true | id_s,id_rem => true | id_s,id_and => true | id_s,id_0 => true | id_s,id__equal_ => true | id_s,id_true => true | id_s,id_s => true | id_s,id_not => false | id_not,id_prime => true | id_not,id_divp => true | id_not,id_prime1 => true | id_not,id_false => true | id_not,id_rem => true | id_not,id_and => true | id_not,id_0 => true | id_not,id__equal_ => true | id_not,id_true => true | id_not,id_s => true | id_not,id_not => true end. Module Symb. Definition A := symb. Definition eq_A := @eq A. Definition eq_proof : equivalence A eq_A. Proof. constructor. red ;reflexivity . red ;intros ;transitivity y ;assumption. red ;intros ;symmetry ;assumption. Defined. Add Relation A eq_A reflexivity proved by (@equiv_refl _ _ eq_proof) symmetry proved by (@equiv_sym _ _ eq_proof) transitivity proved by (@equiv_trans _ _ eq_proof) as EQA . Definition eq_bool := symb_eq_bool. Definition eq_bool_ok := symb_eq_bool_ok. End Symb. Export Symb. End F. Module Alg := term.Make'(F)(term_extension.IntVars). Module Alg_ext := term_extension.Make(Alg). Module EQT := equational_theory.Make(Alg). Module EQT_ext := equational_extension.Make(EQT). End algebra. Module R_xml_0_deep_rew. Inductive R_xml_0_rules : algebra.Alg.term ->algebra.Alg.term ->Prop := (* prime(0) -> false *) | R_xml_0_rule_0 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_false nil) (algebra.Alg.Term algebra.F.id_prime ((algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* prime(s(0)) -> false *) | R_xml_0_rule_1 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_false nil) (algebra.Alg.Term algebra.F.id_prime ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_0 nil)::nil))::nil)) (* prime(s(s(x_))) -> prime1(s(s(x_)),s(x_)) *) | R_xml_0_rule_2 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_prime1 ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil))::(algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil)) (algebra.Alg.Term algebra.F.id_prime ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil))::nil)) (* prime1(x_,0) -> false *) | R_xml_0_rule_3 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_false nil) (algebra.Alg.Term algebra.F.id_prime1 ((algebra.Alg.Var 1):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* prime1(x_,s(0)) -> true *) | R_xml_0_rule_4 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_true nil) (algebra.Alg.Term algebra.F.id_prime1 ((algebra.Alg.Var 1):: (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_0 nil)::nil))::nil)) (* prime1(x_,s(s(y_))) -> and(not(divp(s(s(y_)),x_)),prime1(x_,s(y_))) *) | R_xml_0_rule_5 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_and ((algebra.Alg.Term algebra.F.id_not ((algebra.Alg.Term algebra.F.id_divp ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 2)::nil))::nil)):: (algebra.Alg.Var 1)::nil))::nil))::(algebra.Alg.Term algebra.F.id_prime1 ((algebra.Alg.Var 1):: (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 2)::nil))::nil))::nil)) (algebra.Alg.Term algebra.F.id_prime1 ((algebra.Alg.Var 1):: (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 2)::nil))::nil))::nil)) (* divp(x_,y_) -> =(rem(x_,y_),0) *) | R_xml_0_rule_6 : R_xml_0_rules (algebra.Alg.Term algebra.F.id__equal_ ((algebra.Alg.Term algebra.F.id_rem ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::nil))::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (algebra.Alg.Term algebra.F.id_divp ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::nil)) . Definition R_xml_0_rule_as_list_0 := ((algebra.Alg.Term algebra.F.id_prime ((algebra.Alg.Term algebra.F.id_0 nil)::nil)),(algebra.Alg.Term algebra.F.id_false nil))::nil. Definition R_xml_0_rule_as_list_1 := ((algebra.Alg.Term algebra.F.id_prime ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_0 nil)::nil))::nil)), (algebra.Alg.Term algebra.F.id_false nil))::R_xml_0_rule_as_list_0. Definition R_xml_0_rule_as_list_2 := ((algebra.Alg.Term algebra.F.id_prime ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil))::nil)), (algebra.Alg.Term algebra.F.id_prime1 ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil)):: (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil))):: R_xml_0_rule_as_list_1. Definition R_xml_0_rule_as_list_3 := ((algebra.Alg.Term algebra.F.id_prime1 ((algebra.Alg.Var 1):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)), (algebra.Alg.Term algebra.F.id_false nil))::R_xml_0_rule_as_list_2. Definition R_xml_0_rule_as_list_4 := ((algebra.Alg.Term algebra.F.id_prime1 ((algebra.Alg.Var 1):: (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_0 nil)::nil))::nil)),(algebra.Alg.Term algebra.F.id_true nil)):: R_xml_0_rule_as_list_3. Definition R_xml_0_rule_as_list_5 := ((algebra.Alg.Term algebra.F.id_prime1 ((algebra.Alg.Var 1):: (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 2)::nil))::nil))::nil)), (algebra.Alg.Term algebra.F.id_and ((algebra.Alg.Term algebra.F.id_not ((algebra.Alg.Term algebra.F.id_divp ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 2)::nil))::nil)):: (algebra.Alg.Var 1)::nil))::nil))::(algebra.Alg.Term algebra.F.id_prime1 ((algebra.Alg.Var 1)::(algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 2)::nil))::nil))::nil))):: R_xml_0_rule_as_list_4. Definition R_xml_0_rule_as_list_6 := ((algebra.Alg.Term algebra.F.id_divp ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::nil)), (algebra.Alg.Term algebra.F.id__equal_ ((algebra.Alg.Term algebra.F.id_rem ((algebra.Alg.Var 1)::(algebra.Alg.Var 2)::nil)):: (algebra.Alg.Term algebra.F.id_0 nil)::nil)))::R_xml_0_rule_as_list_5. Definition R_xml_0_rule_as_list := R_xml_0_rule_as_list_6. Lemma R_xml_0_rules_included : forall l r, R_xml_0_rules r l <-> In (l,r) R_xml_0_rule_as_list. Proof. intros l r. constructor. intros H. case H;clear H; (apply (more_list.mem_impl_in (@eq (algebra.Alg.term*algebra.Alg.term))); [tauto|idtac]); match goal with | |- _ _ _ ?t ?l => let u := fresh "u" in (generalize (more_list.mem_bool_ok _ _ algebra.Alg_ext.eq_term_term_bool_ok t l); set (u:=more_list.mem_bool algebra.Alg_ext.eq_term_term_bool t l) in *; vm_compute in u|-;unfold u in *;clear u;intros H;refine H) end . intros H. vm_compute in H|-. rewrite <- or_ext_generated.or8_equiv in H|-. case H;clear H;intros H. injection H;intros ;subst;constructor 7. injection H;intros ;subst;constructor 6. injection H;intros ;subst;constructor 5. injection H;intros ;subst;constructor 4. injection H;intros ;subst;constructor 3. injection H;intros ;subst;constructor 2. injection H;intros ;subst;constructor 1. elim H. Qed. Lemma R_xml_0_non_var : forall x t, ~R_xml_0_rules t (algebra.EQT.T.Var x). Proof. intros x t H. inversion H. Qed. Lemma R_xml_0_reg : forall s t, (R_xml_0_rules s t) -> forall x, In x (algebra.Alg.var_list s) ->In x (algebra.Alg.var_list t). Proof. intros s t H. inversion H;intros x Hx; (apply (more_list.mem_impl_in (@eq algebra.Alg.variable));[tauto|idtac]); apply (more_list.in_impl_mem (@eq algebra.Alg.variable)) in Hx; vm_compute in Hx|-*;tauto. Qed. Inductive and_8 (x4 x5 x6 x7 x8 x9 x10 x11:Prop) : Prop := | conj_8 : x4->x5->x6->x7->x8->x9->x10->x11->and_8 x4 x5 x6 x7 x8 x9 x10 x11 . Lemma are_constuctors_of_R_xml_0 : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> and_8 (t = (algebra.Alg.Term algebra.F.id_false nil) -> t' = (algebra.Alg.Term algebra.F.id_false nil)) (forall x5 x7, t = (algebra.Alg.Term algebra.F.id_rem (x5::x7::nil)) -> exists x4, exists x6, t' = (algebra.Alg.Term algebra.F.id_rem (x4::x6::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x4 x5)/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x6 x7)) (forall x5 x7, t = (algebra.Alg.Term algebra.F.id_and (x5::x7::nil)) -> exists x4, exists x6, t' = (algebra.Alg.Term algebra.F.id_and (x4::x6::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x4 x5)/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x6 x7)) (t = (algebra.Alg.Term algebra.F.id_0 nil) -> t' = (algebra.Alg.Term algebra.F.id_0 nil)) (forall x5 x7, t = (algebra.Alg.Term algebra.F.id__equal_ (x5::x7::nil)) -> exists x4, exists x6, t' = (algebra.Alg.Term algebra.F.id__equal_ (x4::x6::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x4 x5)/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x6 x7)) (t = (algebra.Alg.Term algebra.F.id_true nil) -> t' = (algebra.Alg.Term algebra.F.id_true nil)) (forall x5, t = (algebra.Alg.Term algebra.F.id_s (x5::nil)) -> exists x4, t' = (algebra.Alg.Term algebra.F.id_s (x4::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x4 x5)) (forall x5, t = (algebra.Alg.Term algebra.F.id_not (x5::nil)) -> exists x4, t' = (algebra.Alg.Term algebra.F.id_not (x4::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x4 x5)). Proof. intros t t' H. induction H as [|y IH z z_to_y] using closure_extension.refl_trans_clos_ind2. constructor 1. intros H;intuition;constructor 1. intros x5 x7 H;exists x5;exists x7;intuition;constructor 1. intros x5 x7 H;exists x5;exists x7;intuition;constructor 1. intros H;intuition;constructor 1. intros x5 x7 H;exists x5;exists x7;intuition;constructor 1. intros H;intuition;constructor 1. intros x5 H;exists x5;intuition;constructor 1. intros x5 H;exists x5;intuition;constructor 1. inversion z_to_y as [t1 t2 H H0 H1|f l1 l2 H0 H H2];clear z_to_y;subst. inversion H as [t1 t2 sigma H2 H1 H0];clear H IH;subst;inversion H2; clear ;constructor;try (intros until 0 );clear ;intros abs; discriminate abs. destruct IH as [H_id_false H_id_rem H_id_and H_id_0 H_id__equal_ H_id_true H_id_s H_id_not]. constructor. clear H_id_rem H_id_and H_id_0 H_id__equal_ H_id_true H_id_s H_id_not; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_false H_id_and H_id_0 H_id__equal_ H_id_true H_id_s H_id_not; intros x5 x7 H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). match goal with | H:algebra.EQT.one_step _ ?y x5 |- _ => destruct (H_id_rem y x7 (refl_equal _)) as [x4 [x6]];intros ;intuition; exists x4;exists x6;intuition; eapply closure_extension.refl_trans_clos_R;eassumption end . match goal with | H:algebra.EQT.one_step _ ?y x7 |- _ => destruct (H_id_rem x5 y (refl_equal _)) as [x4 [x6]];intros ;intuition; exists x4;exists x6;intuition; eapply closure_extension.refl_trans_clos_R;eassumption end . clear H_id_false H_id_rem H_id_0 H_id__equal_ H_id_true H_id_s H_id_not; intros x5 x7 H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). match goal with | H:algebra.EQT.one_step _ ?y x5 |- _ => destruct (H_id_and y x7 (refl_equal _)) as [x4 [x6]];intros ;intuition; exists x4;exists x6;intuition; eapply closure_extension.refl_trans_clos_R;eassumption end . match goal with | H:algebra.EQT.one_step _ ?y x7 |- _ => destruct (H_id_and x5 y (refl_equal _)) as [x4 [x6]];intros ;intuition; exists x4;exists x6;intuition; eapply closure_extension.refl_trans_clos_R;eassumption end . clear H_id_false H_id_rem H_id_and H_id__equal_ H_id_true H_id_s H_id_not; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_false H_id_rem H_id_and H_id_0 H_id_true H_id_s H_id_not; intros x5 x7 H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). match goal with | H:algebra.EQT.one_step _ ?y x5 |- _ => destruct (H_id__equal_ y x7 (refl_equal _)) as [x4 [x6]];intros ; intuition;exists x4;exists x6;intuition; eapply closure_extension.refl_trans_clos_R;eassumption end . match goal with | H:algebra.EQT.one_step _ ?y x7 |- _ => destruct (H_id__equal_ x5 y (refl_equal _)) as [x4 [x6]];intros ; intuition;exists x4;exists x6;intuition; eapply closure_extension.refl_trans_clos_R;eassumption end . clear H_id_false H_id_rem H_id_and H_id_0 H_id__equal_ H_id_s H_id_not; intros H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_false H_id_rem H_id_and H_id_0 H_id__equal_ H_id_true H_id_not; intros x5 H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). match goal with | H:algebra.EQT.one_step _ ?y x5 |- _ => destruct (H_id_s y (refl_equal _)) as [x4];intros ;intuition;exists x4; intuition;eapply closure_extension.refl_trans_clos_R;eassumption end . clear H_id_false H_id_rem H_id_and H_id_0 H_id__equal_ H_id_true H_id_s; intros x5 H;injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). match goal with | H:algebra.EQT.one_step _ ?y x5 |- _ => destruct (H_id_not y (refl_equal _)) as [x4];intros ;intuition; exists x4;intuition;eapply closure_extension.refl_trans_clos_R; eassumption end . Qed. Lemma id_false_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_false nil) -> t' = (algebra.Alg.Term algebra.F.id_false nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_rem_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> forall x5 x7, t = (algebra.Alg.Term algebra.F.id_rem (x5::x7::nil)) -> exists x4, exists x6, t' = (algebra.Alg.Term algebra.F.id_rem (x4::x6::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x4 x5)/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x6 x7). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_and_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> forall x5 x7, t = (algebra.Alg.Term algebra.F.id_and (x5::x7::nil)) -> exists x4, exists x6, t' = (algebra.Alg.Term algebra.F.id_and (x4::x6::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x4 x5)/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x6 x7). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_0_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_0 nil) -> t' = (algebra.Alg.Term algebra.F.id_0 nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id__equal__is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> forall x5 x7, t = (algebra.Alg.Term algebra.F.id__equal_ (x5::x7::nil)) -> exists x4, exists x6, t' = (algebra.Alg.Term algebra.F.id__equal_ (x4::x6::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x4 x5)/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x6 x7). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_true_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_true nil) -> t' = (algebra.Alg.Term algebra.F.id_true nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_s_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> forall x5, t = (algebra.Alg.Term algebra.F.id_s (x5::nil)) -> exists x4, t' = (algebra.Alg.Term algebra.F.id_s (x4::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x4 x5). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_not_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> forall x5, t = (algebra.Alg.Term algebra.F.id_not (x5::nil)) -> exists x4, t' = (algebra.Alg.Term algebra.F.id_not (x4::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x4 x5). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Ltac impossible_star_reduction_R_xml_0 := match goal with | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_false nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_false_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_rem (?x5::?x4::nil)) |- _ => let x5 := fresh "x" in (let x4 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (let Hred2 := fresh "Hred" in (destruct (id_rem_is_R_xml_0_constructor H (refl_equal _)) as [x5 [x4 [Heq [Hred2 Hred1]]]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; impossible_star_reduction_R_xml_0 )))))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_and (?x5::?x4::nil)) |- _ => let x5 := fresh "x" in (let x4 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (let Hred2 := fresh "Hred" in (destruct (id_and_is_R_xml_0_constructor H (refl_equal _)) as [x5 [x4 [Heq [Hred2 Hred1]]]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; impossible_star_reduction_R_xml_0 )))))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_0 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_0_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id__equal_ (?x5::?x4::nil)) |- _ => let x5 := fresh "x" in (let x4 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (let Hred2 := fresh "Hred" in (destruct (id__equal__is_R_xml_0_constructor H (refl_equal _)) as [x5 [x4 [Heq [Hred2 Hred1]]]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; impossible_star_reduction_R_xml_0 )))))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_true nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_true_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_s (?x4::nil)) |- _ => let x4 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (destruct (id_s_is_R_xml_0_constructor H (refl_equal _)) as [x4 [Heq Hred1]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; impossible_star_reduction_R_xml_0 )))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_not (?x4::nil)) |- _ => let x4 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (destruct (id_not_is_R_xml_0_constructor H (refl_equal _)) as [x4 [Heq Hred1]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; impossible_star_reduction_R_xml_0 )))) end . Ltac simplify_star_reduction_R_xml_0 := match goal with | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_false nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_false_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_rem (?x5::?x4::nil)) |- _ => let x5 := fresh "x" in (let x4 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (let Hred2 := fresh "Hred" in (destruct (id_rem_is_R_xml_0_constructor H (refl_equal _)) as [x5 [x4 [Heq [Hred2 Hred1]]]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; try (simplify_star_reduction_R_xml_0 ))))))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_and (?x5::?x4::nil)) |- _ => let x5 := fresh "x" in (let x4 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (let Hred2 := fresh "Hred" in (destruct (id_and_is_R_xml_0_constructor H (refl_equal _)) as [x5 [x4 [Heq [Hred2 Hred1]]]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; try (simplify_star_reduction_R_xml_0 ))))))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_0 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_0_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id__equal_ (?x5::?x4::nil)) |- _ => let x5 := fresh "x" in (let x4 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (let Hred2 := fresh "Hred" in (destruct (id__equal__is_R_xml_0_constructor H (refl_equal _)) as [x5 [x4 [Heq [Hred2 Hred1]]]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; try (simplify_star_reduction_R_xml_0 ))))))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_true nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_true_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_s (?x4::nil)) |- _ => let x4 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (destruct (id_s_is_R_xml_0_constructor H (refl_equal _)) as [x4 [Heq Hred1]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; try (simplify_star_reduction_R_xml_0 ))))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_not (?x4::nil)) |- _ => let x4 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (destruct (id_not_is_R_xml_0_constructor H (refl_equal _)) as [x4 [Heq Hred1]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; try (simplify_star_reduction_R_xml_0 ))))) end . End R_xml_0_deep_rew. Module InterpGen := interp.Interp(algebra.EQT). Module ddp := dp.MakeDP(algebra.EQT). Module SymbType. Definition A := algebra.Alg.F.Symb.A. End SymbType. Module Symb_more_list := more_list_extention.Make(SymbType)(algebra.Alg.F.Symb). Module SymbSet := list_set.Make(algebra.F.Symb). Module Interp. Section S. Require Import interp. Hypothesis A : Type. Hypothesis Ale Alt Aeq : A -> A -> Prop. Hypothesis Aop : interp.ordering_pair Aeq Alt Ale. Hypothesis A0 : A. Notation Local "a <= b" := (Ale a b). Hypothesis P_id_prime : A ->A. Hypothesis P_id_divp : A ->A ->A. Hypothesis P_id_prime1 : A ->A ->A. Hypothesis P_id_false : A. Hypothesis P_id_rem : A ->A ->A. Hypothesis P_id_and : A ->A ->A. Hypothesis P_id_0 : A. Hypothesis P_id__equal_ : A ->A ->A. Hypothesis P_id_true : A. Hypothesis P_id_s : A ->A. Hypothesis P_id_not : A ->A. Hypothesis P_id_prime_monotonic : forall x4 x5, (A0 <= x5)/\ (x5 <= x4) ->P_id_prime x5 <= P_id_prime x4. Hypothesis P_id_divp_monotonic : forall x4 x6 x5 x7, (A0 <= x7)/\ (x7 <= x6) -> (A0 <= x5)/\ (x5 <= x4) ->P_id_divp x5 x7 <= P_id_divp x4 x6. Hypothesis P_id_prime1_monotonic : forall x4 x6 x5 x7, (A0 <= x7)/\ (x7 <= x6) -> (A0 <= x5)/\ (x5 <= x4) ->P_id_prime1 x5 x7 <= P_id_prime1 x4 x6. Hypothesis P_id_rem_monotonic : forall x4 x6 x5 x7, (A0 <= x7)/\ (x7 <= x6) -> (A0 <= x5)/\ (x5 <= x4) ->P_id_rem x5 x7 <= P_id_rem x4 x6. Hypothesis P_id_and_monotonic : forall x4 x6 x5 x7, (A0 <= x7)/\ (x7 <= x6) -> (A0 <= x5)/\ (x5 <= x4) ->P_id_and x5 x7 <= P_id_and x4 x6. Hypothesis P_id__equal__monotonic : forall x4 x6 x5 x7, (A0 <= x7)/\ (x7 <= x6) -> (A0 <= x5)/\ (x5 <= x4) ->P_id__equal_ x5 x7 <= P_id__equal_ x4 x6. Hypothesis P_id_s_monotonic : forall x4 x5, (A0 <= x5)/\ (x5 <= x4) ->P_id_s x5 <= P_id_s x4. Hypothesis P_id_not_monotonic : forall x4 x5, (A0 <= x5)/\ (x5 <= x4) ->P_id_not x5 <= P_id_not x4. Hypothesis P_id_prime_bounded : forall x4, (A0 <= x4) ->A0 <= P_id_prime x4. Hypothesis P_id_divp_bounded : forall x4 x5, (A0 <= x4) ->(A0 <= x5) ->A0 <= P_id_divp x5 x4. Hypothesis P_id_prime1_bounded : forall x4 x5, (A0 <= x4) ->(A0 <= x5) ->A0 <= P_id_prime1 x5 x4. Hypothesis P_id_false_bounded : A0 <= P_id_false . Hypothesis P_id_rem_bounded : forall x4 x5, (A0 <= x4) ->(A0 <= x5) ->A0 <= P_id_rem x5 x4. Hypothesis P_id_and_bounded : forall x4 x5, (A0 <= x4) ->(A0 <= x5) ->A0 <= P_id_and x5 x4. Hypothesis P_id_0_bounded : A0 <= P_id_0 . Hypothesis P_id__equal__bounded : forall x4 x5, (A0 <= x4) ->(A0 <= x5) ->A0 <= P_id__equal_ x5 x4. Hypothesis P_id_true_bounded : A0 <= P_id_true . Hypothesis P_id_s_bounded : forall x4, (A0 <= x4) ->A0 <= P_id_s x4. Hypothesis P_id_not_bounded : forall x4, (A0 <= x4) ->A0 <= P_id_not x4. Fixpoint measure t { struct t } := match t with | (algebra.Alg.Term algebra.F.id_prime (x4::nil)) => P_id_prime (measure x4) | (algebra.Alg.Term algebra.F.id_divp (x5::x4::nil)) => P_id_divp (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_prime1 (x5::x4::nil)) => P_id_prime1 (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_false nil) => P_id_false | (algebra.Alg.Term algebra.F.id_rem (x5::x4::nil)) => P_id_rem (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_and (x5::x4::nil)) => P_id_and (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id__equal_ (x5::x4::nil)) => P_id__equal_ (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_true nil) => P_id_true | (algebra.Alg.Term algebra.F.id_s (x4::nil)) => P_id_s (measure x4) | (algebra.Alg.Term algebra.F.id_not (x4::nil)) => P_id_not (measure x4) | _ => A0 end. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_prime (x4::nil)) => P_id_prime (measure x4) | (algebra.Alg.Term algebra.F.id_divp (x5::x4::nil)) => P_id_divp (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_prime1 (x5::x4::nil)) => P_id_prime1 (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_false nil) => P_id_false | (algebra.Alg.Term algebra.F.id_rem (x5::x4::nil)) => P_id_rem (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_and (x5::x4::nil)) => P_id_and (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id__equal_ (x5::x4::nil)) => P_id__equal_ (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_true nil) => P_id_true | (algebra.Alg.Term algebra.F.id_s (x4::nil)) => P_id_s (measure x4) | (algebra.Alg.Term algebra.F.id_not (x4::nil)) => P_id_not (measure x4) | _ => A0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Definition Pols f : InterpGen.Pol_type A (InterpGen.get_arity f) := match f with | algebra.F.id_prime => P_id_prime | algebra.F.id_divp => P_id_divp | algebra.F.id_prime1 => P_id_prime1 | algebra.F.id_false => P_id_false | algebra.F.id_rem => P_id_rem | algebra.F.id_and => P_id_and | algebra.F.id_0 => P_id_0 | algebra.F.id__equal_ => P_id__equal_ | algebra.F.id_true => P_id_true | algebra.F.id_s => P_id_s | algebra.F.id_not => P_id_not end. Lemma same_measure : forall t, measure t = InterpGen.measure A0 Pols t. Proof. fix 1 . intros [a| f l]. simpl in |-*. unfold eq_rect_r, eq_rect, sym_eq in |-*. reflexivity . refine match f with | algebra.F.id_prime => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_divp => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_prime1 => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_false => match l with | nil => _ | _::_ => _ end | algebra.F.id_rem => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_and => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_0 => match l with | nil => _ | _::_ => _ end | algebra.F.id__equal_ => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_true => match l with | nil => _ | _::_ => _ end | algebra.F.id_s => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_not => match l with | nil => _ | _::nil => _ | _::_::_ => _ end end;simpl in |-*;unfold eq_rect_r, eq_rect, sym_eq in |-*; try (reflexivity );f_equal ;auto. Qed. Lemma measure_bounded : forall t, A0 <= measure t. Proof. intros t. rewrite same_measure in |-*. apply (InterpGen.measure_bounded Aop). intros f. case f. vm_compute in |-*;intros ;apply P_id_prime_bounded;assumption. vm_compute in |-*;intros ;apply P_id_divp_bounded;assumption. vm_compute in |-*;intros ;apply P_id_prime1_bounded;assumption. vm_compute in |-*;intros ;apply P_id_false_bounded;assumption. vm_compute in |-*;intros ;apply P_id_rem_bounded;assumption. vm_compute in |-*;intros ;apply P_id_and_bounded;assumption. vm_compute in |-*;intros ;apply P_id_0_bounded;assumption. vm_compute in |-*;intros ;apply P_id__equal__bounded;assumption. vm_compute in |-*;intros ;apply P_id_true_bounded;assumption. vm_compute in |-*;intros ;apply P_id_s_bounded;assumption. vm_compute in |-*;intros ;apply P_id_not_bounded;assumption. Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Hypothesis rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. intros . do 2 (rewrite same_measure in |-*). apply InterpGen.measure_star_monotonic with (1:=Aop) (Pols:=Pols) (rules:=R_xml_0_deep_rew.R_xml_0_rules). intros f. case f. vm_compute in |-*;intros ;apply P_id_prime_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_divp_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_prime1_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;intros ;apply P_id_rem_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_and_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;intros ;apply P_id__equal__monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;intros ;apply P_id_s_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_not_monotonic;assumption. intros f. case f. vm_compute in |-*;intros ;apply P_id_prime_bounded;assumption. vm_compute in |-*;intros ;apply P_id_divp_bounded;assumption. vm_compute in |-*;intros ;apply P_id_prime1_bounded;assumption. vm_compute in |-*;intros ;apply P_id_false_bounded;assumption. vm_compute in |-*;intros ;apply P_id_rem_bounded;assumption. vm_compute in |-*;intros ;apply P_id_and_bounded;assumption. vm_compute in |-*;intros ;apply P_id_0_bounded;assumption. vm_compute in |-*;intros ;apply P_id__equal__bounded;assumption. vm_compute in |-*;intros ;apply P_id_true_bounded;assumption. vm_compute in |-*;intros ;apply P_id_s_bounded;assumption. vm_compute in |-*;intros ;apply P_id_not_bounded;assumption. intros . do 2 (rewrite <- same_measure in |-*). apply rules_monotonic;assumption. assumption. Qed. Hypothesis P_id_PRIME1 : A ->A ->A. Hypothesis P_id_DIVP : A ->A ->A. Hypothesis P_id_PRIME : A ->A. Hypothesis P_id_PRIME1_monotonic : forall x4 x6 x5 x7, (A0 <= x7)/\ (x7 <= x6) -> (A0 <= x5)/\ (x5 <= x4) ->P_id_PRIME1 x5 x7 <= P_id_PRIME1 x4 x6. Hypothesis P_id_DIVP_monotonic : forall x4 x6 x5 x7, (A0 <= x7)/\ (x7 <= x6) -> (A0 <= x5)/\ (x5 <= x4) ->P_id_DIVP x5 x7 <= P_id_DIVP x4 x6. Hypothesis P_id_PRIME_monotonic : forall x4 x5, (A0 <= x5)/\ (x5 <= x4) ->P_id_PRIME x5 <= P_id_PRIME x4. Definition marked_measure t := match t with | (algebra.Alg.Term algebra.F.id_prime1 (x5::x4::nil)) => P_id_PRIME1 (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_divp (x5::x4::nil)) => P_id_DIVP (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_prime (x4::nil)) => P_id_PRIME (measure x4) | _ => measure t end. Definition Marked_pols : forall f, (algebra.EQT.defined R_xml_0_deep_rew.R_xml_0_rules f) -> InterpGen.Pol_type A (InterpGen.get_arity f). Proof. intros f H. apply ddp.defined_list_complete with (1:=R_xml_0_deep_rew.R_xml_0_rules_included) in H . apply (Symb_more_list.change_in algebra.F.symb_order) in H . set (u := (Symb_more_list.qs algebra.F.symb_order (Symb_more_list.XSet.remove_red (ddp.defined_list R_xml_0_deep_rew.R_xml_0_rule_as_list)))) in * . vm_compute in u . unfold u in * . clear u . unfold more_list.mem_bool in H . match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x5 x4;apply (P_id_PRIME1 x5 x4). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x5 x4;apply (P_id_DIVP x5 x4). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x4;apply (P_id_PRIME x4). discriminate H. Defined. Lemma same_marked_measure : forall t, marked_measure t = InterpGen.marked_measure A0 Pols Marked_pols (ddp.defined_dec _ _ R_xml_0_deep_rew.R_xml_0_rules_included) t. Proof. intros [a| f l]. simpl in |-*. unfold eq_rect_r, eq_rect, sym_eq in |-*. reflexivity . refine match f with | algebra.F.id_prime => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_divp => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_prime1 => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_false => match l with | nil => _ | _::_ => _ end | algebra.F.id_rem => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_and => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_0 => match l with | nil => _ | _::_ => _ end | algebra.F.id__equal_ => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_true => match l with | nil => _ | _::_ => _ end | algebra.F.id_s => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_not => match l with | nil => _ | _::nil => _ | _::_::_ => _ end end. vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . Qed. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_prime1 (x5:: x4::nil)) => P_id_PRIME1 (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_divp (x5:: x4::nil)) => P_id_DIVP (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_prime (x4::nil)) => P_id_PRIME (measure x4) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. intros . do 2 (rewrite same_marked_measure in |-*). apply InterpGen.marked_measure_star_monotonic with (1:=Aop) (Pols:= Pols) (rules:=R_xml_0_deep_rew.R_xml_0_rules). clear f. intros f. case f. vm_compute in |-*;intros ;apply P_id_prime_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_divp_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_prime1_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;intros ;apply P_id_rem_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_and_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;intros ;apply P_id__equal__monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;intros ;apply P_id_s_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_not_monotonic;assumption. clear f. intros f. case f. vm_compute in |-*;intros ;apply P_id_prime_bounded;assumption. vm_compute in |-*;intros ;apply P_id_divp_bounded;assumption. vm_compute in |-*;intros ;apply P_id_prime1_bounded;assumption. vm_compute in |-*;intros ;apply P_id_false_bounded;assumption. vm_compute in |-*;intros ;apply P_id_rem_bounded;assumption. vm_compute in |-*;intros ;apply P_id_and_bounded;assumption. vm_compute in |-*;intros ;apply P_id_0_bounded;assumption. vm_compute in |-*;intros ;apply P_id__equal__bounded;assumption. vm_compute in |-*;intros ;apply P_id_true_bounded;assumption. vm_compute in |-*;intros ;apply P_id_s_bounded;assumption. vm_compute in |-*;intros ;apply P_id_not_bounded;assumption. intros . do 2 (rewrite <- same_measure in |-*). apply rules_monotonic;assumption. clear f. intros f. clear H. intros H. generalize H. apply ddp.defined_list_complete with (1:=R_xml_0_deep_rew.R_xml_0_rules_included) in H . apply (Symb_more_list.change_in algebra.F.symb_order) in H . set (u := (Symb_more_list.qs algebra.F.symb_order (Symb_more_list.XSet.remove_red (ddp.defined_list R_xml_0_deep_rew.R_xml_0_rule_as_list)))) in * . vm_compute in u . unfold u in * . clear u . unfold more_list.mem_bool in H . match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_PRIME1_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_DIVP_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_PRIME_monotonic;assumption. discriminate H. assumption. Qed. End S. End Interp. Module InterpZ. Section S. Open Scope Z_scope. Hypothesis min_value : Z. Import ring_extention. Notation Local "'Alt'" := (Zwf.Zwf min_value). Notation Local "'Ale'" := Zle. Notation Local "'Aeq'" := (@eq Z). Notation Local "a <= b" := (Ale a b). Notation Local "a < b" := (Alt a b). Hypothesis P_id_prime : Z ->Z. Hypothesis P_id_divp : Z ->Z ->Z. Hypothesis P_id_prime1 : Z ->Z ->Z. Hypothesis P_id_false : Z. Hypothesis P_id_rem : Z ->Z ->Z. Hypothesis P_id_and : Z ->Z ->Z. Hypothesis P_id_0 : Z. Hypothesis P_id__equal_ : Z ->Z ->Z. Hypothesis P_id_true : Z. Hypothesis P_id_s : Z ->Z. Hypothesis P_id_not : Z ->Z. Hypothesis P_id_prime_monotonic : forall x4 x5, (min_value <= x5)/\ (x5 <= x4) ->P_id_prime x5 <= P_id_prime x4. Hypothesis P_id_divp_monotonic : forall x4 x6 x5 x7, (min_value <= x7)/\ (x7 <= x6) -> (min_value <= x5)/\ (x5 <= x4) ->P_id_divp x5 x7 <= P_id_divp x4 x6. Hypothesis P_id_prime1_monotonic : forall x4 x6 x5 x7, (min_value <= x7)/\ (x7 <= x6) -> (min_value <= x5)/\ (x5 <= x4) ->P_id_prime1 x5 x7 <= P_id_prime1 x4 x6. Hypothesis P_id_rem_monotonic : forall x4 x6 x5 x7, (min_value <= x7)/\ (x7 <= x6) -> (min_value <= x5)/\ (x5 <= x4) ->P_id_rem x5 x7 <= P_id_rem x4 x6. Hypothesis P_id_and_monotonic : forall x4 x6 x5 x7, (min_value <= x7)/\ (x7 <= x6) -> (min_value <= x5)/\ (x5 <= x4) ->P_id_and x5 x7 <= P_id_and x4 x6. Hypothesis P_id__equal__monotonic : forall x4 x6 x5 x7, (min_value <= x7)/\ (x7 <= x6) -> (min_value <= x5)/\ (x5 <= x4) -> P_id__equal_ x5 x7 <= P_id__equal_ x4 x6. Hypothesis P_id_s_monotonic : forall x4 x5, (min_value <= x5)/\ (x5 <= x4) ->P_id_s x5 <= P_id_s x4. Hypothesis P_id_not_monotonic : forall x4 x5, (min_value <= x5)/\ (x5 <= x4) ->P_id_not x5 <= P_id_not x4. Hypothesis P_id_prime_bounded : forall x4, (min_value <= x4) ->min_value <= P_id_prime x4. Hypothesis P_id_divp_bounded : forall x4 x5, (min_value <= x4) ->(min_value <= x5) ->min_value <= P_id_divp x5 x4. Hypothesis P_id_prime1_bounded : forall x4 x5, (min_value <= x4) ->(min_value <= x5) ->min_value <= P_id_prime1 x5 x4. Hypothesis P_id_false_bounded : min_value <= P_id_false . Hypothesis P_id_rem_bounded : forall x4 x5, (min_value <= x4) ->(min_value <= x5) ->min_value <= P_id_rem x5 x4. Hypothesis P_id_and_bounded : forall x4 x5, (min_value <= x4) ->(min_value <= x5) ->min_value <= P_id_and x5 x4. Hypothesis P_id_0_bounded : min_value <= P_id_0 . Hypothesis P_id__equal__bounded : forall x4 x5, (min_value <= x4) ->(min_value <= x5) ->min_value <= P_id__equal_ x5 x4. Hypothesis P_id_true_bounded : min_value <= P_id_true . Hypothesis P_id_s_bounded : forall x4, (min_value <= x4) ->min_value <= P_id_s x4. Hypothesis P_id_not_bounded : forall x4, (min_value <= x4) ->min_value <= P_id_not x4. Definition measure := Interp.measure min_value P_id_prime P_id_divp P_id_prime1 P_id_false P_id_rem P_id_and P_id_0 P_id__equal_ P_id_true P_id_s P_id_not. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_prime (x4::nil)) => P_id_prime (measure x4) | (algebra.Alg.Term algebra.F.id_divp (x5::x4::nil)) => P_id_divp (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_prime1 (x5::x4::nil)) => P_id_prime1 (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_false nil) => P_id_false | (algebra.Alg.Term algebra.F.id_rem (x5::x4::nil)) => P_id_rem (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_and (x5::x4::nil)) => P_id_and (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id__equal_ (x5::x4::nil)) => P_id__equal_ (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_true nil) => P_id_true | (algebra.Alg.Term algebra.F.id_s (x4::nil)) => P_id_s (measure x4) | (algebra.Alg.Term algebra.F.id_not (x4::nil)) => P_id_not (measure x4) | _ => min_value end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, min_value <= measure t. Proof. unfold measure in |-*. apply Interp.measure_bounded with Alt Aeq; (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Hypothesis rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply Interp.measure_star_monotonic with Alt Aeq. (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). intros ;apply P_id_prime_monotonic;assumption. intros ;apply P_id_divp_monotonic;assumption. intros ;apply P_id_prime1_monotonic;assumption. intros ;apply P_id_rem_monotonic;assumption. intros ;apply P_id_and_monotonic;assumption. intros ;apply P_id__equal__monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_not_monotonic;assumption. intros ;apply P_id_prime_bounded;assumption. intros ;apply P_id_divp_bounded;assumption. intros ;apply P_id_prime1_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_rem_bounded;assumption. intros ;apply P_id_and_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id__equal__bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_not_bounded;assumption. apply rules_monotonic. Qed. Hypothesis P_id_PRIME1 : Z ->Z ->Z. Hypothesis P_id_DIVP : Z ->Z ->Z. Hypothesis P_id_PRIME : Z ->Z. Hypothesis P_id_PRIME1_monotonic : forall x4 x6 x5 x7, (min_value <= x7)/\ (x7 <= x6) -> (min_value <= x5)/\ (x5 <= x4) ->P_id_PRIME1 x5 x7 <= P_id_PRIME1 x4 x6. Hypothesis P_id_DIVP_monotonic : forall x4 x6 x5 x7, (min_value <= x7)/\ (x7 <= x6) -> (min_value <= x5)/\ (x5 <= x4) ->P_id_DIVP x5 x7 <= P_id_DIVP x4 x6. Hypothesis P_id_PRIME_monotonic : forall x4 x5, (min_value <= x5)/\ (x5 <= x4) ->P_id_PRIME x5 <= P_id_PRIME x4. Definition marked_measure := Interp.marked_measure min_value P_id_prime P_id_divp P_id_prime1 P_id_false P_id_rem P_id_and P_id_0 P_id__equal_ P_id_true P_id_s P_id_not P_id_PRIME1 P_id_DIVP P_id_PRIME. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_prime1 (x5:: x4::nil)) => P_id_PRIME1 (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_divp (x5:: x4::nil)) => P_id_DIVP (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_prime (x4::nil)) => P_id_PRIME (measure x4) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply Interp.marked_measure_star_monotonic with Alt Aeq. (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). intros ;apply P_id_prime_monotonic;assumption. intros ;apply P_id_divp_monotonic;assumption. intros ;apply P_id_prime1_monotonic;assumption. intros ;apply P_id_rem_monotonic;assumption. intros ;apply P_id_and_monotonic;assumption. intros ;apply P_id__equal__monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_not_monotonic;assumption. intros ;apply P_id_prime_bounded;assumption. intros ;apply P_id_divp_bounded;assumption. intros ;apply P_id_prime1_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_rem_bounded;assumption. intros ;apply P_id_and_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id__equal__bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_not_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PRIME1_monotonic;assumption. intros ;apply P_id_DIVP_monotonic;assumption. intros ;apply P_id_PRIME_monotonic;assumption. Qed. End S. End InterpZ. Module WF_R_xml_0_deep_rew. Inductive DP_R_xml_0 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_0 : forall x4 x1, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s (x1::nil))::nil)) x4) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_prime1 ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s (x1::nil))::nil))::(algebra.Alg.Term algebra.F.id_s (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_prime (x4::nil)) (* *) | DP_R_xml_0_1 : forall x4 x2 x1 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x5) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s (x2::nil))::nil)) x4) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_divp ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s (x2::nil))::nil))::x1::nil)) (algebra.Alg.Term algebra.F.id_prime1 (x5::x4::nil)) (* *) | DP_R_xml_0_2 : forall x4 x2 x1 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x5) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s (x2::nil))::nil)) x4) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_prime1 (x1:: (algebra.Alg.Term algebra.F.id_s (x2::nil))::nil)) (algebra.Alg.Term algebra.F.id_prime1 (x5::x4::nil)) . Module ddp := dp.MakeDP(algebra.EQT). Lemma R_xml_0_dp_step_spec : forall x y, (ddp.dp_step R_xml_0_deep_rew.R_xml_0_rules x y) -> exists f, exists l1, exists l2, y = algebra.Alg.Term f l2/\ (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2)/\ (ddp.dp R_xml_0_deep_rew.R_xml_0_rules x (algebra.Alg.Term f l1)). Proof. intros x y H. induction H. inversion H. subst. destruct t0. refine ((False_ind) _ _). refine (R_xml_0_deep_rew.R_xml_0_non_var H0). simpl in H|-*. exists a. exists ((List.map) (algebra.Alg.apply_subst sigma) l). exists ((List.map) (algebra.Alg.apply_subst sigma) l). repeat (constructor). assumption. exists f. exists l2. exists l1. constructor. constructor. constructor. constructor. rewrite <- closure.rwr_list_trans_clos_one_step_list. assumption. assumption. Qed. Ltac included_dp_tac H := injection H;clear H;intros;subst; repeat (match goal with | H: closure.refl_trans_clos (closure.one_step_list _) (_::_) _ |- _=> let x := fresh "x" in let l := fresh "l" in let h1 := fresh "h" in let h2 := fresh "h" in let h3 := fresh "h" in destruct (@algebra.EQT_ext.one_step_list_star_decompose_cons _ _ _ _ H) as [x [l[h1[h2 h3]]]];clear H;subst | H: closure.refl_trans_clos (closure.one_step_list _) nil _ |- _ => rewrite (@algebra.EQT_ext.one_step_list_star_decompose_nil _ _ H) in *;clear H end );simpl; econstructor eassumption . Ltac dp_concl_tac h2 h cont_tac t := match t with | False => let h' := fresh "a" in (set (h':=t) in *;cont_tac h'; repeat ( let e := type of h in (match e with | ?t => unfold t in h|-; (case h; [abstract (clear h;intros h;injection h; clear h;intros ;subst; included_dp_tac h2)| clear h;intros h;clear t]) | ?t => unfold t in h|-;elim h end ) )) | or ?a ?b => let cont_tac h' := let h'' := fresh "a" in (set (h'':=or a h') in *;cont_tac h'') in (dp_concl_tac h2 h cont_tac b) end . Module WF_DP_R_xml_0. Inductive DP_R_xml_0_non_scc_1 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_1_0 : forall x4 x2 x1 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x5) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s (x2::nil))::nil)) x4) -> DP_R_xml_0_non_scc_1 (algebra.Alg.Term algebra.F.id_divp ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s (x2::nil))::nil))::x1::nil)) (algebra.Alg.Term algebra.F.id_prime1 (x5::x4::nil)) . Lemma acc_DP_R_xml_0_non_scc_1 : forall x y, (DP_R_xml_0_non_scc_1 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_scc_2 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_2_0 : forall x4 x2 x1 x5, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x5) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s (x2::nil))::nil)) x4) -> DP_R_xml_0_scc_2 (algebra.Alg.Term algebra.F.id_prime1 (x1:: (algebra.Alg.Term algebra.F.id_s (x2::nil))::nil)) (algebra.Alg.Term algebra.F.id_prime1 (x5::x4::nil)) . Module WF_DP_R_xml_0_scc_2. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_prime (x4:Z) := 0. Definition P_id_divp (x4:Z) (x5:Z) := 2 + 2* x4. Definition P_id_prime1 (x4:Z) (x5:Z) := 0. Definition P_id_false := 0. Definition P_id_rem (x4:Z) (x5:Z) := 1* x4. Definition P_id_and (x4:Z) (x5:Z) := 0. Definition P_id_0 := 0. Definition P_id__equal_ (x4:Z) (x5:Z) := 1 + 1* x4. Definition P_id_true := 0. Definition P_id_s (x4:Z) := 3 + 3* x4. Definition P_id_not (x4:Z) := 0. Lemma P_id_prime_monotonic : forall x4 x5, (0 <= x5)/\ (x5 <= x4) ->P_id_prime x5 <= P_id_prime x4. Proof. intros x5 x4. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_divp_monotonic : forall x4 x6 x5 x7, (0 <= x7)/\ (x7 <= x6) -> (0 <= x5)/\ (x5 <= x4) ->P_id_divp x5 x7 <= P_id_divp x4 x6. Proof. intros x7 x6 x5 x4. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_prime1_monotonic : forall x4 x6 x5 x7, (0 <= x7)/\ (x7 <= x6) -> (0 <= x5)/\ (x5 <= x4) ->P_id_prime1 x5 x7 <= P_id_prime1 x4 x6. Proof. intros x7 x6 x5 x4. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_rem_monotonic : forall x4 x6 x5 x7, (0 <= x7)/\ (x7 <= x6) -> (0 <= x5)/\ (x5 <= x4) ->P_id_rem x5 x7 <= P_id_rem x4 x6. Proof. intros x7 x6 x5 x4. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_and_monotonic : forall x4 x6 x5 x7, (0 <= x7)/\ (x7 <= x6) -> (0 <= x5)/\ (x5 <= x4) ->P_id_and x5 x7 <= P_id_and x4 x6. Proof. intros x7 x6 x5 x4. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id__equal__monotonic : forall x4 x6 x5 x7, (0 <= x7)/\ (x7 <= x6) -> (0 <= x5)/\ (x5 <= x4) ->P_id__equal_ x5 x7 <= P_id__equal_ x4 x6. Proof. intros x7 x6 x5 x4. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x4 x5, (0 <= x5)/\ (x5 <= x4) ->P_id_s x5 <= P_id_s x4. Proof. intros x5 x4. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_not_monotonic : forall x4 x5, (0 <= x5)/\ (x5 <= x4) ->P_id_not x5 <= P_id_not x4. Proof. intros x5 x4. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_prime_bounded : forall x4, (0 <= x4) ->0 <= P_id_prime x4. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_divp_bounded : forall x4 x5, (0 <= x4) ->(0 <= x5) ->0 <= P_id_divp x5 x4. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_prime1_bounded : forall x4 x5, (0 <= x4) ->(0 <= x5) ->0 <= P_id_prime1 x5 x4. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_false_bounded : 0 <= P_id_false . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_rem_bounded : forall x4 x5, (0 <= x4) ->(0 <= x5) ->0 <= P_id_rem x5 x4. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_and_bounded : forall x4 x5, (0 <= x4) ->(0 <= x5) ->0 <= P_id_and x5 x4. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_0_bounded : 0 <= P_id_0 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id__equal__bounded : forall x4 x5, (0 <= x4) ->(0 <= x5) ->0 <= P_id__equal_ x5 x4. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_true_bounded : 0 <= P_id_true . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x4, (0 <= x4) ->0 <= P_id_s x4. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_not_bounded : forall x4, (0 <= x4) ->0 <= P_id_not x4. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_prime P_id_divp P_id_prime1 P_id_false P_id_rem P_id_and P_id_0 P_id__equal_ P_id_true P_id_s P_id_not. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_prime (x4::nil)) => P_id_prime (measure x4) | (algebra.Alg.Term algebra.F.id_divp (x5::x4::nil)) => P_id_divp (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_prime1 (x5::x4::nil)) => P_id_prime1 (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_false nil) => P_id_false | (algebra.Alg.Term algebra.F.id_rem (x5::x4::nil)) => P_id_rem (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_and (x5::x4::nil)) => P_id_and (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id__equal_ (x5::x4::nil)) => P_id__equal_ (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_true nil) => P_id_true | (algebra.Alg.Term algebra.F.id_s (x4::nil)) => P_id_s (measure x4) | (algebra.Alg.Term algebra.F.id_not (x4::nil)) => P_id_not (measure x4) | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_prime_monotonic;assumption. intros ;apply P_id_divp_monotonic;assumption. intros ;apply P_id_prime1_monotonic;assumption. intros ;apply P_id_rem_monotonic;assumption. intros ;apply P_id_and_monotonic;assumption. intros ;apply P_id__equal__monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_not_monotonic;assumption. intros ;apply P_id_prime_bounded;assumption. intros ;apply P_id_divp_bounded;assumption. intros ;apply P_id_prime1_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_rem_bounded;assumption. intros ;apply P_id_and_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id__equal__bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_not_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_PRIME1 (x4:Z) (x5:Z) := 2* x5. Definition P_id_DIVP (x4:Z) (x5:Z) := 0. Definition P_id_PRIME (x4:Z) := 0. Lemma P_id_PRIME1_monotonic : forall x4 x6 x5 x7, (0 <= x7)/\ (x7 <= x6) -> (0 <= x5)/\ (x5 <= x4) ->P_id_PRIME1 x5 x7 <= P_id_PRIME1 x4 x6. Proof. intros x7 x6 x5 x4. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_DIVP_monotonic : forall x4 x6 x5 x7, (0 <= x7)/\ (x7 <= x6) -> (0 <= x5)/\ (x5 <= x4) ->P_id_DIVP x5 x7 <= P_id_DIVP x4 x6. Proof. intros x7 x6 x5 x4. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_PRIME_monotonic : forall x4 x5, (0 <= x5)/\ (x5 <= x4) ->P_id_PRIME x5 <= P_id_PRIME x4. Proof. intros x5 x4. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_prime P_id_divp P_id_prime1 P_id_false P_id_rem P_id_and P_id_0 P_id__equal_ P_id_true P_id_s P_id_not P_id_PRIME1 P_id_DIVP P_id_PRIME. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_prime1 (x5:: x4::nil)) => P_id_PRIME1 (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_divp (x5:: x4::nil)) => P_id_DIVP (measure x5) (measure x4) | (algebra.Alg.Term algebra.F.id_prime (x4::nil)) => P_id_PRIME (measure x4) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_prime_monotonic;assumption. intros ;apply P_id_divp_monotonic;assumption. intros ;apply P_id_prime1_monotonic;assumption. intros ;apply P_id_rem_monotonic;assumption. intros ;apply P_id_and_monotonic;assumption. intros ;apply P_id__equal__monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_not_monotonic;assumption. intros ;apply P_id_prime_bounded;assumption. intros ;apply P_id_divp_bounded;assumption. intros ;apply P_id_prime1_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_rem_bounded;assumption. intros ;apply P_id_and_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id__equal__bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_not_bounded;assumption. apply rules_monotonic. intros ;apply P_id_PRIME1_monotonic;assumption. intros ;apply P_id_DIVP_monotonic;assumption. intros ;apply P_id_PRIME_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_2. Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_2. Definition wf_DP_R_xml_0_scc_2 := WF_DP_R_xml_0_scc_2.wf. Lemma acc_DP_R_xml_0_scc_2 : forall x y, (DP_R_xml_0_scc_2 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_2). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))). apply wf_DP_R_xml_0_scc_2. Qed. Inductive DP_R_xml_0_non_scc_3 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_3_0 : forall x4 x1, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s (x1::nil))::nil)) x4) -> DP_R_xml_0_non_scc_3 (algebra.Alg.Term algebra.F.id_prime1 ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Term algebra.F.id_s (x1::nil))::nil))::(algebra.Alg.Term algebra.F.id_s (x1::nil))::nil)) (algebra.Alg.Term algebra.F.id_prime (x4::nil)) . Lemma acc_DP_R_xml_0_non_scc_3 : forall x y, (DP_R_xml_0_non_scc_3 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))). Qed. Lemma wf : well_founded WF_R_xml_0_deep_rew.DP_R_xml_0. Proof. constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_0; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_0; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )||(fail)))))))). Qed. End WF_DP_R_xml_0. Definition wf_H := WF_DP_R_xml_0.wf. Lemma wf : well_founded (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules). Proof. apply ddp.dp_criterion. apply R_xml_0_deep_rew.R_xml_0_non_var. apply R_xml_0_deep_rew.R_xml_0_reg. intros ; apply (ddp.constructor_defined_dec _ _ R_xml_0_deep_rew.R_xml_0_rules_included). refine (Inclusion.wf_incl _ _ _ _ wf_H). intros x y H. destruct (R_xml_0_dp_step_spec H) as [f [l1 [l2 [H1 [H2 H3]]]]]. destruct (ddp.dp_list_complete _ _ R_xml_0_deep_rew.R_xml_0_rules_included _ _ H3) as [x' [y' [sigma [h1 [h2 h3]]]]]. clear H3. subst. vm_compute in h3|-. let e := type of h3 in (dp_concl_tac h2 h3 ltac:(fun _ => idtac) e). Qed. End WF_R_xml_0_deep_rew. (* *** Local Variables: *** *** coq-prog-name: "coqtop" *** *** coq-prog-args: ("-emacs-U" "-I" "$COCCINELLE/examples" "-I" "$COCCINELLE/term_algebra" "-I" "$COCCINELLE/term_orderings" "-I" "$COCCINELLE/basis" "-I" "$COCCINELLE/list_extensions" "-I" "$COCCINELLE/examples/cime_trace/") *** *** compile-command: "coqc -I $COCCINELLE/term_algebra -I $COCCINELLE/term_orderings -I $COCCINELLE/basis -I $COCCINELLE/list_extensions -I $COCCINELLE/examples/cime_trace/ -I $COCCINELLE/examples/ c_output/strat/tpdb-5.0___TRS___SK90___2.29.trs/a3pat.v" *** *** End: *** *)