Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _0_1 : symb | _eq__2 : symb | and : symb | divp : symb | false : symb | not : symb | prime : symb | prime1 : symb | rem : symb | s : symb | true : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._0_1 => 0 | M._eq__2 => 2 | M.and => 2 | M.divp => 2 | M.false => 0 | M.not => 1 | M.prime => 1 | M.prime1 => 2 | M.rem => 2 | M.s => 1 | M.true => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _0_1 := F0 M._0_1 Vnil. Definition _eq__2 x2 x1 := F0 M._eq__2 (Vcons x2 (Vcons x1 Vnil)). Definition and x2 x1 := F0 M.and (Vcons x2 (Vcons x1 Vnil)). Definition divp x2 x1 := F0 M.divp (Vcons x2 (Vcons x1 Vnil)). Definition false := F0 M.false Vnil. Definition not x1 := F0 M.not (Vcons x1 Vnil). Definition prime x1 := F0 M.prime (Vcons x1 Vnil). Definition prime1 x2 x1 := F0 M.prime1 (Vcons x2 (Vcons x1 Vnil)). Definition rem x2 x1 := F0 M.rem (Vcons x2 (Vcons x1 Vnil)). Definition s x1 := F0 M.s (Vcons x1 Vnil). Definition true := F0 M.true Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.prime S0._0_1) S0.false :: R0 (S0.prime (S0.s S0._0_1)) S0.false :: R0 (S0.prime (S0.s (S0.s (V0 0)))) (S0.prime1 (S0.s (S0.s (V0 0))) (S0.s (V0 0))) :: R0 (S0.prime1 (V0 0) S0._0_1) S0.false :: R0 (S0.prime1 (V0 0) (S0.s S0._0_1)) S0.true :: R0 (S0.prime1 (V0 0) (S0.s (S0.s (V0 1)))) (S0.and (S0.not (S0.divp (S0.s (S0.s (V0 1))) (V0 0))) (S0.prime1 (V0 0) (S0.s (V0 1)))) :: R0 (S0.divp (V0 0) (V0 1)) (S0._eq__2 (S0.rem (V0 0) (V0 1)) S0._0_1) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition h_eq__2 x2 x1 := F1 (hd_symb s1_p M._eq__2) (Vcons x2 (Vcons x1 Vnil)). Definition _eq__2 x2 x1 := F1 (int_symb s1_p M._eq__2) (Vcons x2 (Vcons x1 Vnil)). Definition hand x2 x1 := F1 (hd_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition and x2 x1 := F1 (int_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition hdivp x2 x1 := F1 (hd_symb s1_p M.divp) (Vcons x2 (Vcons x1 Vnil)). Definition divp x2 x1 := F1 (int_symb s1_p M.divp) (Vcons x2 (Vcons x1 Vnil)). Definition hfalse := F1 (hd_symb s1_p M.false) Vnil. Definition false := F1 (int_symb s1_p M.false) Vnil. Definition hnot x1 := F1 (hd_symb s1_p M.not) (Vcons x1 Vnil). Definition not x1 := F1 (int_symb s1_p M.not) (Vcons x1 Vnil). Definition hprime x1 := F1 (hd_symb s1_p M.prime) (Vcons x1 Vnil). Definition prime x1 := F1 (int_symb s1_p M.prime) (Vcons x1 Vnil). Definition hprime1 x2 x1 := F1 (hd_symb s1_p M.prime1) (Vcons x2 (Vcons x1 Vnil)). Definition prime1 x2 x1 := F1 (int_symb s1_p M.prime1) (Vcons x2 (Vcons x1 Vnil)). Definition hrem x2 x1 := F1 (hd_symb s1_p M.rem) (Vcons x2 (Vcons x1 Vnil)). Definition rem x2 x1 := F1 (int_symb s1_p M.rem) (Vcons x2 (Vcons x1 Vnil)). Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). Definition htrue := F1 (hd_symb s1_p M.true) Vnil. Definition true := F1 (int_symb s1_p M.true) Vnil. End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hprime1 (V1 0) (S1.s (S1.s (V1 1)))) (S1.hdivp (S1.s (S1.s (V1 1))) (V1 0)) :: nil) :: ( R1 (S1.hprime1 (V1 0) (S1.s (S1.s (V1 1)))) (S1.hprime1 (V1 0) (S1.s (V1 1))) :: nil) :: ( R1 (S1.hprime (S1.s (S1.s (V1 0)))) (S1.hprime1 (S1.s (S1.s (V1 0))) (S1.s (V1 0))) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.prime) => nil | (int_symb M.prime) => nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.false) => nil | (int_symb M.false) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (3%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.prime1) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.prime1) => nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.and) => nil | (int_symb M.and) => nil | (hd_symb M.not) => nil | (int_symb M.not) => nil | (hd_symb M.divp) => nil | (int_symb M.divp) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M._eq__2) => nil | (int_symb M._eq__2) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.rem) => nil | (int_symb M.rem) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI1.prove_termination. termination_trivial. left. co_scc. Qed.