Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _eq__1 : symb | and : symb | implies : symb | not : symb | or : symb | true : symb | xor : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._eq__1 => 2 | M.and => 2 | M.implies => 2 | M.not => 1 | M.or => 2 | M.true => 0 | M.xor => 2 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _eq__1 x2 x1 := F0 M._eq__1 (Vcons x2 (Vcons x1 Vnil)). Definition and x2 x1 := F0 M.and (Vcons x2 (Vcons x1 Vnil)). Definition implies x2 x1 := F0 M.implies (Vcons x2 (Vcons x1 Vnil)). Definition not x1 := F0 M.not (Vcons x1 Vnil). Definition or x2 x1 := F0 M.or (Vcons x2 (Vcons x1 Vnil)). Definition true := F0 M.true Vnil. Definition xor x2 x1 := F0 M.xor (Vcons x2 (Vcons x1 Vnil)). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.not (V0 0)) (S0.xor (V0 0) S0.true) :: R0 (S0.implies (V0 0) (V0 1)) (S0.xor (S0.and (V0 0) (V0 1)) (S0.xor (V0 0) S0.true)) :: R0 (S0.or (V0 0) (V0 1)) (S0.xor (S0.and (V0 0) (V0 1)) (S0.xor (V0 0) (V0 1))) :: R0 (S0._eq__1 (V0 0) (V0 1)) (S0.xor (V0 0) (S0.xor (V0 1) S0.true)) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_eq__1 x2 x1 := F1 (hd_symb s1_p M._eq__1) (Vcons x2 (Vcons x1 Vnil)). Definition _eq__1 x2 x1 := F1 (int_symb s1_p M._eq__1) (Vcons x2 (Vcons x1 Vnil)). Definition hand x2 x1 := F1 (hd_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition and x2 x1 := F1 (int_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition himplies x2 x1 := F1 (hd_symb s1_p M.implies) (Vcons x2 (Vcons x1 Vnil)). Definition implies x2 x1 := F1 (int_symb s1_p M.implies) (Vcons x2 (Vcons x1 Vnil)). Definition hnot x1 := F1 (hd_symb s1_p M.not) (Vcons x1 Vnil). Definition not x1 := F1 (int_symb s1_p M.not) (Vcons x1 Vnil). Definition hor x2 x1 := F1 (hd_symb s1_p M.or) (Vcons x2 (Vcons x1 Vnil)). Definition or x2 x1 := F1 (int_symb s1_p M.or) (Vcons x2 (Vcons x1 Vnil)). Definition htrue := F1 (hd_symb s1_p M.true) Vnil. Definition true := F1 (int_symb s1_p M.true) Vnil. Definition hxor x2 x1 := F1 (hd_symb s1_p M.xor) (Vcons x2 (Vcons x1 Vnil)). Definition xor x2 x1 := F1 (int_symb s1_p M.xor) (Vcons x2 (Vcons x1 Vnil)). End S1. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. termination_trivial. Qed.