Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | and : symb | false : symb | implies : symb | not : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.and => 2 | M.false => 0 | M.implies => 2 | M.not => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition and x2 x1 := F0 M.and (Vcons x2 (Vcons x1 Vnil)). Definition false := F0 M.false Vnil. Definition implies x2 x1 := F0 M.implies (Vcons x2 (Vcons x1 Vnil)). Definition not x1 := F0 M.not (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.and (V0 0) S0.false) S0.false :: R0 (S0.and (V0 0) (S0.not S0.false)) (V0 0) :: R0 (S0.not (S0.not (V0 0))) (V0 0) :: R0 (S0.implies S0.false (V0 0)) (S0.not S0.false) :: R0 (S0.implies (V0 0) S0.false) (S0.not (V0 0)) :: R0 (S0.implies (S0.not (V0 0)) (S0.not (V0 1))) (S0.implies (V0 1) (S0.and (V0 0) (V0 1))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition hand x2 x1 := F1 (hd_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition and x2 x1 := F1 (int_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition hfalse := F1 (hd_symb s1_p M.false) Vnil. Definition false := F1 (int_symb s1_p M.false) Vnil. Definition himplies x2 x1 := F1 (hd_symb s1_p M.implies) (Vcons x2 (Vcons x1 Vnil)). Definition implies x2 x1 := F1 (int_symb s1_p M.implies) (Vcons x2 (Vcons x1 Vnil)). Definition hnot x1 := F1 (hd_symb s1_p M.not) (Vcons x1 Vnil). Definition not x1 := F1 (int_symb s1_p M.not) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.himplies (S1.not (V1 0)) (S1.not (V1 1))) (S1.hand (V1 0) (V1 1)) :: nil) :: ( R1 (S1.himplies (V1 0) (S1.false)) (S1.hnot (V1 0)) :: nil) :: ( R1 (S1.himplies (S1.false) (V1 0)) (S1.hnot (S1.false)) :: nil) :: ( R1 (S1.himplies (S1.not (V1 0)) (S1.not (V1 1))) (S1.himplies (V1 1) (S1.and (V1 0) (V1 1))) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.and) => nil | (int_symb M.and) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.false) => nil | (int_symb M.false) => (2%Z, Vnil) :: nil | (hd_symb M.not) => nil | (int_symb M.not) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.implies) => (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.implies) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. left. co_scc. right. PI1.prove_termination. termination_trivial. Qed.