Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _dot__2 : symb | _plus__plus__1 : symb | nil : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._dot__2 => 2 | M._plus__plus__1 => 2 | M.nil => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _dot__2 x2 x1 := F0 M._dot__2 (Vcons x2 (Vcons x1 Vnil)). Definition _plus__plus__1 x2 x1 := F0 M._plus__plus__1 (Vcons x2 (Vcons x1 Vnil)). Definition nil := F0 M.nil Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0._plus__plus__1 S0.nil (V0 0)) (V0 0) :: R0 (S0._plus__plus__1 (V0 0) S0.nil) (V0 0) :: R0 (S0._plus__plus__1 (S0._dot__2 (V0 0) (V0 1)) (V0 2)) (S0._dot__2 (V0 0) (S0._plus__plus__1 (V0 1) (V0 2))) :: R0 (S0._plus__plus__1 (S0._plus__plus__1 (V0 0) (V0 1)) (V0 2)) (S0._plus__plus__1 (V0 0) (S0._plus__plus__1 (V0 1) (V0 2))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_dot__2 x2 x1 := F1 (hd_symb s1_p M._dot__2) (Vcons x2 (Vcons x1 Vnil)). Definition _dot__2 x2 x1 := F1 (int_symb s1_p M._dot__2) (Vcons x2 (Vcons x1 Vnil)). Definition h_plus__plus__1 x2 x1 := F1 (hd_symb s1_p M._plus__plus__1) (Vcons x2 (Vcons x1 Vnil)). Definition _plus__plus__1 x2 x1 := F1 (int_symb s1_p M._plus__plus__1) (Vcons x2 (Vcons x1 Vnil)). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. End S1. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M._plus__plus__1) => (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M._plus__plus__1) => (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M._dot__2) => nil | (int_symb M._dot__2) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M._plus__plus__1) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M._plus__plus__1) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M._dot__2) => nil | (int_symb M._dot__2) => (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. PI1.prove_termination. PI2.prove_termination. termination_trivial. Qed.