Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _plus__plus__1 : symb | flatten : symb | nil : symb | rev : symb | unit : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._plus__plus__1 => 2 | M.flatten => 1 | M.nil => 0 | M.rev => 1 | M.unit => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _plus__plus__1 x2 x1 := F0 M._plus__plus__1 (Vcons x2 (Vcons x1 Vnil)). Definition flatten x1 := F0 M.flatten (Vcons x1 Vnil). Definition nil := F0 M.nil Vnil. Definition rev x1 := F0 M.rev (Vcons x1 Vnil). Definition unit x1 := F0 M.unit (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.flatten S0.nil) S0.nil :: R0 (S0.flatten (S0.unit (V0 0))) (S0.flatten (V0 0)) :: R0 (S0.flatten (S0._plus__plus__1 (V0 0) (V0 1))) (S0._plus__plus__1 (S0.flatten (V0 0)) (S0.flatten (V0 1))) :: R0 (S0.flatten (S0._plus__plus__1 (S0.unit (V0 0)) (V0 1))) (S0._plus__plus__1 (S0.flatten (V0 0)) (S0.flatten (V0 1))) :: R0 (S0.flatten (S0.flatten (V0 0))) (S0.flatten (V0 0)) :: R0 (S0.rev S0.nil) S0.nil :: R0 (S0.rev (S0.unit (V0 0))) (S0.unit (V0 0)) :: R0 (S0.rev (S0._plus__plus__1 (V0 0) (V0 1))) (S0._plus__plus__1 (S0.rev (V0 1)) (S0.rev (V0 0))) :: R0 (S0.rev (S0.rev (V0 0))) (V0 0) :: R0 (S0._plus__plus__1 (V0 0) S0.nil) (V0 0) :: R0 (S0._plus__plus__1 S0.nil (V0 0)) (V0 0) :: R0 (S0._plus__plus__1 (S0._plus__plus__1 (V0 0) (V0 1)) (V0 2)) (S0._plus__plus__1 (V0 0) (S0._plus__plus__1 (V0 1) (V0 2))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_plus__plus__1 x2 x1 := F1 (hd_symb s1_p M._plus__plus__1) (Vcons x2 (Vcons x1 Vnil)). Definition _plus__plus__1 x2 x1 := F1 (int_symb s1_p M._plus__plus__1) (Vcons x2 (Vcons x1 Vnil)). Definition hflatten x1 := F1 (hd_symb s1_p M.flatten) (Vcons x1 Vnil). Definition flatten x1 := F1 (int_symb s1_p M.flatten) (Vcons x1 Vnil). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hrev x1 := F1 (hd_symb s1_p M.rev) (Vcons x1 Vnil). Definition rev x1 := F1 (int_symb s1_p M.rev) (Vcons x1 Vnil). Definition hunit x1 := F1 (hd_symb s1_p M.unit) (Vcons x1 Vnil). Definition unit x1 := F1 (int_symb s1_p M.unit) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.h_plus__plus__1 (S1._plus__plus__1 (V1 0) (V1 1)) (V1 2)) (S1.h_plus__plus__1 (V1 1) (V1 2)) :: R1 (S1.h_plus__plus__1 (S1._plus__plus__1 (V1 0) (V1 1)) (V1 2)) (S1.h_plus__plus__1 (V1 0) (S1._plus__plus__1 (V1 1) (V1 2))) :: nil) :: ( R1 (S1.hrev (S1._plus__plus__1 (V1 0) (V1 1))) (S1.h_plus__plus__1 (S1.rev (V1 1)) (S1.rev (V1 0))) :: nil) :: ( R1 (S1.hrev (S1._plus__plus__1 (V1 0) (V1 1))) (S1.hrev (V1 0)) :: R1 (S1.hrev (S1._plus__plus__1 (V1 0) (V1 1))) (S1.hrev (V1 1)) :: nil) :: ( R1 (S1.hflatten (S1._plus__plus__1 (S1.unit (V1 0)) (V1 1))) (S1.h_plus__plus__1 (S1.flatten (V1 0)) (S1.flatten (V1 1))) :: nil) :: ( R1 (S1.hflatten (S1._plus__plus__1 (V1 0) (V1 1))) (S1.h_plus__plus__1 (S1.flatten (V1 0)) (S1.flatten (V1 1))) :: nil) :: ( R1 (S1.hflatten (S1._plus__plus__1 (V1 0) (V1 1))) (S1.hflatten (V1 0)) :: R1 (S1.hflatten (S1.unit (V1 0))) (S1.hflatten (V1 0)) :: R1 (S1.hflatten (S1._plus__plus__1 (V1 0) (V1 1))) (S1.hflatten (V1 1)) :: R1 (S1.hflatten (S1._plus__plus__1 (S1.unit (V1 0)) (V1 1))) (S1.hflatten (V1 0)) :: R1 (S1.hflatten (S1._plus__plus__1 (S1.unit (V1 0)) (V1 1))) (S1.hflatten (V1 1)) :: R1 (S1.hflatten (S1.flatten (V1 0))) (S1.hflatten (V1 0)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.flatten) => nil | (int_symb M.flatten) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.unit) => nil | (int_symb M.unit) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._plus__plus__1) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M._plus__plus__1) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.rev) => nil | (int_symb M.rev) => (1%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.flatten) => nil | (int_symb M.flatten) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.unit) => nil | (int_symb M.unit) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._plus__plus__1) => nil | (int_symb M._plus__plus__1) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.rev) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.rev) => (1%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* polynomial interpretation 3 *) Module PIS3 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.flatten) => (3%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.flatten) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.unit) => nil | (int_symb M.unit) => (3%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._plus__plus__1) => nil | (int_symb M._plus__plus__1) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.rev) => nil | (int_symb M.rev) => (3%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS3. Module PI3 := PolyInt PIS3. (* polynomial interpretation 4 *) Module PIS4 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.flatten) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.flatten) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (2%Z, Vnil) :: nil | (hd_symb M.unit) => nil | (int_symb M.unit) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._plus__plus__1) => nil | (int_symb M._plus__plus__1) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.rev) => nil | (int_symb M.rev) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS4. Module PI4 := PolyInt PIS4. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. right. PI1.prove_termination. termination_trivial. left. co_scc. right. PI2.prove_termination. termination_trivial. left. co_scc. left. co_scc. right. PI3.prove_termination. PI4.prove_termination. termination_trivial. Qed.