Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _dot__1 : symb | _eq__2 : symb | and : symb | del : symb | f : symb | false : symb | nil : symb | true : symb | u : symb | v : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._dot__1 => 2 | M._eq__2 => 2 | M.and => 2 | M.del => 1 | M.f => 4 | M.false => 0 | M.nil => 0 | M.true => 0 | M.u => 0 | M.v => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _dot__1 x2 x1 := F0 M._dot__1 (Vcons x2 (Vcons x1 Vnil)). Definition _eq__2 x2 x1 := F0 M._eq__2 (Vcons x2 (Vcons x1 Vnil)). Definition and x2 x1 := F0 M.and (Vcons x2 (Vcons x1 Vnil)). Definition del x1 := F0 M.del (Vcons x1 Vnil). Definition f x4 x3 x2 x1 := F0 M.f (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition false := F0 M.false Vnil. Definition nil := F0 M.nil Vnil. Definition true := F0 M.true Vnil. Definition u := F0 M.u Vnil. Definition v := F0 M.v Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.del (S0._dot__1 (V0 0) (S0._dot__1 (V0 1) (V0 2)))) (S0.f (S0._eq__2 (V0 0) (V0 1)) (V0 0) (V0 1) (V0 2)) :: R0 (S0.f S0.true (V0 0) (V0 1) (V0 2)) (S0.del (S0._dot__1 (V0 1) (V0 2))) :: R0 (S0.f S0.false (V0 0) (V0 1) (V0 2)) (S0._dot__1 (V0 0) (S0.del (S0._dot__1 (V0 1) (V0 2)))) :: R0 (S0._eq__2 S0.nil S0.nil) S0.true :: R0 (S0._eq__2 (S0._dot__1 (V0 0) (V0 1)) S0.nil) S0.false :: R0 (S0._eq__2 S0.nil (S0._dot__1 (V0 0) (V0 1))) S0.false :: R0 (S0._eq__2 (S0._dot__1 (V0 0) (V0 1)) (S0._dot__1 S0.u S0.v)) (S0.and (S0._eq__2 (V0 0) S0.u) (S0._eq__2 (V0 1) S0.v)) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_dot__1 x2 x1 := F1 (hd_symb s1_p M._dot__1) (Vcons x2 (Vcons x1 Vnil)). Definition _dot__1 x2 x1 := F1 (int_symb s1_p M._dot__1) (Vcons x2 (Vcons x1 Vnil)). Definition h_eq__2 x2 x1 := F1 (hd_symb s1_p M._eq__2) (Vcons x2 (Vcons x1 Vnil)). Definition _eq__2 x2 x1 := F1 (int_symb s1_p M._eq__2) (Vcons x2 (Vcons x1 Vnil)). Definition hand x2 x1 := F1 (hd_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition and x2 x1 := F1 (int_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition hdel x1 := F1 (hd_symb s1_p M.del) (Vcons x1 Vnil). Definition del x1 := F1 (int_symb s1_p M.del) (Vcons x1 Vnil). Definition hf x4 x3 x2 x1 := F1 (hd_symb s1_p M.f) (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition f x4 x3 x2 x1 := F1 (int_symb s1_p M.f) (Vcons x4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil)))). Definition hfalse := F1 (hd_symb s1_p M.false) Vnil. Definition false := F1 (int_symb s1_p M.false) Vnil. Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition htrue := F1 (hd_symb s1_p M.true) Vnil. Definition true := F1 (int_symb s1_p M.true) Vnil. Definition hu := F1 (hd_symb s1_p M.u) Vnil. Definition u := F1 (int_symb s1_p M.u) Vnil. Definition hv := F1 (hd_symb s1_p M.v) Vnil. Definition v := F1 (int_symb s1_p M.v) Vnil. End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.h_eq__2 (S1._dot__1 (V1 0) (V1 1)) (S1._dot__1 (S1.u) (S1.v))) (S1.h_eq__2 (V1 1) (S1.v)) :: nil) :: ( R1 (S1.h_eq__2 (S1._dot__1 (V1 0) (V1 1)) (S1._dot__1 (S1.u) (S1.v))) (S1.h_eq__2 (V1 0) (S1.u)) :: nil) :: ( R1 (S1.hdel (S1._dot__1 (V1 0) (S1._dot__1 (V1 1) (V1 2)))) (S1.h_eq__2 (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hf (S1.true) (V1 0) (V1 1) (V1 2)) (S1.hdel (S1._dot__1 (V1 1) (V1 2))) :: R1 (S1.hdel (S1._dot__1 (V1 0) (S1._dot__1 (V1 1) (V1 2)))) (S1.hf (S1._eq__2 (V1 0) (V1 1)) (V1 0) (V1 1) (V1 2)) :: R1 (S1.hf (S1.false) (V1 0) (V1 1) (V1 2)) (S1.hdel (S1._dot__1 (V1 1) (V1 2))) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.del) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.del) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M._dot__1) => nil | (int_symb M._dot__1) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.f) => (3%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 1 Vnil))))) :: nil | (int_symb M.f) => (2%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: (2%Z, (Vcons 1 (Vcons 0 (Vcons 0 (Vcons 0 Vnil))))) :: (2%Z, (Vcons 0 (Vcons 0 (Vcons 0 (Vcons 1 Vnil))))) :: nil | (hd_symb M._eq__2) => nil | (int_symb M._eq__2) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => (2%Z, Vnil) :: nil | (hd_symb M.false) => nil | (int_symb M.false) => (2%Z, Vnil) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.u) => nil | (int_symb M.u) => nil | (hd_symb M.v) => nil | (int_symb M.v) => nil | (hd_symb M.and) => nil | (int_symb M.and) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* graph decomposition 2 *) Definition cs2 : list (list (@ATrs.rule s1)) := ( R1 (S1.hdel (S1._dot__1 (V1 0) (S1._dot__1 (V1 1) (V1 2)))) (S1.hf (S1._eq__2 (V1 0) (V1 1)) (V1 0) (V1 1) (V1 2)) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. left. co_scc. right. PI1.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs2; subst D; subst R. dpg_unif_N_correct. left. co_scc. Qed.