Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _dot__1 : symb | _eq__2 : symb | admit : symb | carry : symb | cond : symb | nil : symb | sum : symb | true : symb | w : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._dot__1 => 2 | M._eq__2 => 2 | M.admit => 2 | M.carry => 3 | M.cond => 2 | M.nil => 0 | M.sum => 3 | M.true => 0 | M.w => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _dot__1 x2 x1 := F0 M._dot__1 (Vcons x2 (Vcons x1 Vnil)). Definition _eq__2 x2 x1 := F0 M._eq__2 (Vcons x2 (Vcons x1 Vnil)). Definition admit x2 x1 := F0 M.admit (Vcons x2 (Vcons x1 Vnil)). Definition carry x3 x2 x1 := F0 M.carry (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition cond x2 x1 := F0 M.cond (Vcons x2 (Vcons x1 Vnil)). Definition nil := F0 M.nil Vnil. Definition sum x3 x2 x1 := F0 M.sum (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition true := F0 M.true Vnil. Definition w := F0 M.w Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.admit (V0 0) S0.nil) S0.nil :: R0 (S0.admit (V0 0) (S0._dot__1 (V0 1) (S0._dot__1 (V0 2) (S0._dot__1 S0.w (V0 3))))) (S0.cond (S0._eq__2 (S0.sum (V0 0) (V0 1) (V0 2)) S0.w) (S0._dot__1 (V0 1) (S0._dot__1 (V0 2) (S0._dot__1 S0.w (S0.admit (S0.carry (V0 0) (V0 1) (V0 2)) (V0 3)))))) :: R0 (S0.cond S0.true (V0 0)) (V0 0) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_dot__1 x2 x1 := F1 (hd_symb s1_p M._dot__1) (Vcons x2 (Vcons x1 Vnil)). Definition _dot__1 x2 x1 := F1 (int_symb s1_p M._dot__1) (Vcons x2 (Vcons x1 Vnil)). Definition h_eq__2 x2 x1 := F1 (hd_symb s1_p M._eq__2) (Vcons x2 (Vcons x1 Vnil)). Definition _eq__2 x2 x1 := F1 (int_symb s1_p M._eq__2) (Vcons x2 (Vcons x1 Vnil)). Definition hadmit x2 x1 := F1 (hd_symb s1_p M.admit) (Vcons x2 (Vcons x1 Vnil)). Definition admit x2 x1 := F1 (int_symb s1_p M.admit) (Vcons x2 (Vcons x1 Vnil)). Definition hcarry x3 x2 x1 := F1 (hd_symb s1_p M.carry) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition carry x3 x2 x1 := F1 (int_symb s1_p M.carry) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition hcond x2 x1 := F1 (hd_symb s1_p M.cond) (Vcons x2 (Vcons x1 Vnil)). Definition cond x2 x1 := F1 (int_symb s1_p M.cond) (Vcons x2 (Vcons x1 Vnil)). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hsum x3 x2 x1 := F1 (hd_symb s1_p M.sum) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition sum x3 x2 x1 := F1 (int_symb s1_p M.sum) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition htrue := F1 (hd_symb s1_p M.true) Vnil. Definition true := F1 (int_symb s1_p M.true) Vnil. Definition hw := F1 (hd_symb s1_p M.w) Vnil. Definition w := F1 (int_symb s1_p M.w) Vnil. End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hadmit (V1 0) (S1._dot__1 (V1 1) (S1._dot__1 (V1 2) (S1._dot__1 (S1.w) (V1 3))))) (S1.hcond (S1._eq__2 (S1.sum (V1 0) (V1 1) (V1 2)) (S1.w)) (S1._dot__1 (V1 1) (S1._dot__1 (V1 2) (S1._dot__1 (S1.w) (S1.admit (S1.carry (V1 0) (V1 1) (V1 2)) (V1 3)))))) :: nil) :: ( R1 (S1.hadmit (V1 0) (S1._dot__1 (V1 1) (S1._dot__1 (V1 2) (S1._dot__1 (S1.w) (V1 3))))) (S1.hadmit (S1.carry (V1 0) (V1 1) (V1 2)) (V1 3)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.admit) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.admit) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (1%Z, Vnil) :: nil | (hd_symb M._dot__1) => nil | (int_symb M._dot__1) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.w) => nil | (int_symb M.w) => (2%Z, Vnil) :: nil | (hd_symb M.cond) => nil | (int_symb M.cond) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._eq__2) => nil | (int_symb M._eq__2) => nil | (hd_symb M.sum) => nil | (int_symb M.sum) => nil | (hd_symb M.carry) => nil | (int_symb M.carry) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI1.prove_termination. termination_trivial. Qed.