Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | a : symb | b : symb | c : symb | d : symb | e : symb | u : symb | v : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.a => 1 | M.b => 1 | M.c => 1 | M.d => 1 | M.e => 1 | M.u => 1 | M.v => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition a x1 := F0 M.a (Vcons x1 Vnil). Definition b x1 := F0 M.b (Vcons x1 Vnil). Definition c x1 := F0 M.c (Vcons x1 Vnil). Definition d x1 := F0 M.d (Vcons x1 Vnil). Definition e x1 := F0 M.e (Vcons x1 Vnil). Definition u x1 := F0 M.u (Vcons x1 Vnil). Definition v x1 := F0 M.v (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.d (V0 0)) (S0.e (S0.u (V0 0))) :: R0 (S0.d (S0.u (V0 0))) (S0.c (V0 0)) :: R0 (S0.c (S0.u (V0 0))) (S0.b (V0 0)) :: R0 (S0.v (S0.e (V0 0))) (V0 0) :: R0 (S0.b (S0.u (V0 0))) (S0.a (S0.e (V0 0))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition ha x1 := F1 (hd_symb s1_p M.a) (Vcons x1 Vnil). Definition a x1 := F1 (int_symb s1_p M.a) (Vcons x1 Vnil). Definition hb x1 := F1 (hd_symb s1_p M.b) (Vcons x1 Vnil). Definition b x1 := F1 (int_symb s1_p M.b) (Vcons x1 Vnil). Definition hc x1 := F1 (hd_symb s1_p M.c) (Vcons x1 Vnil). Definition c x1 := F1 (int_symb s1_p M.c) (Vcons x1 Vnil). Definition hd x1 := F1 (hd_symb s1_p M.d) (Vcons x1 Vnil). Definition d x1 := F1 (int_symb s1_p M.d) (Vcons x1 Vnil). Definition he x1 := F1 (hd_symb s1_p M.e) (Vcons x1 Vnil). Definition e x1 := F1 (int_symb s1_p M.e) (Vcons x1 Vnil). Definition hu x1 := F1 (hd_symb s1_p M.u) (Vcons x1 Vnil). Definition u x1 := F1 (int_symb s1_p M.u) (Vcons x1 Vnil). Definition hv x1 := F1 (hd_symb s1_p M.v) (Vcons x1 Vnil). Definition v x1 := F1 (int_symb s1_p M.v) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hc (S1.u (V1 0))) (S1.hb (V1 0)) :: nil) :: ( R1 (S1.hd (S1.u (V1 0))) (S1.hc (V1 0)) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. Qed.