Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | a : symb | b : symb | c : symb | d : symb | u : symb | v : symb | w : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.a => 1 | M.b => 1 | M.c => 1 | M.d => 1 | M.u => 1 | M.v => 1 | M.w => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition a x1 := F0 M.a (Vcons x1 Vnil). Definition b x1 := F0 M.b (Vcons x1 Vnil). Definition c x1 := F0 M.c (Vcons x1 Vnil). Definition d x1 := F0 M.d (Vcons x1 Vnil). Definition u x1 := F0 M.u (Vcons x1 Vnil). Definition v x1 := F0 M.v (Vcons x1 Vnil). Definition w x1 := F0 M.w (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.a (S0.c (S0.d (V0 0)))) (S0.c (V0 0)) :: R0 (S0.u (S0.b (S0.d (S0.d (V0 0))))) (S0.b (V0 0)) :: R0 (S0.v (S0.a (S0.a (V0 0)))) (S0.u (S0.v (V0 0))) :: R0 (S0.v (S0.a (S0.c (V0 0)))) (S0.u (S0.b (S0.d (V0 0)))) :: R0 (S0.v (S0.c (V0 0))) (S0.b (V0 0)) :: R0 (S0.w (S0.a (S0.a (V0 0)))) (S0.u (S0.w (V0 0))) :: R0 (S0.w (S0.a (S0.c (V0 0)))) (S0.u (S0.b (S0.d (V0 0)))) :: R0 (S0.w (S0.c (V0 0))) (S0.b (V0 0)) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition ha x1 := F1 (hd_symb s1_p M.a) (Vcons x1 Vnil). Definition a x1 := F1 (int_symb s1_p M.a) (Vcons x1 Vnil). Definition hb x1 := F1 (hd_symb s1_p M.b) (Vcons x1 Vnil). Definition b x1 := F1 (int_symb s1_p M.b) (Vcons x1 Vnil). Definition hc x1 := F1 (hd_symb s1_p M.c) (Vcons x1 Vnil). Definition c x1 := F1 (int_symb s1_p M.c) (Vcons x1 Vnil). Definition hd x1 := F1 (hd_symb s1_p M.d) (Vcons x1 Vnil). Definition d x1 := F1 (int_symb s1_p M.d) (Vcons x1 Vnil). Definition hu x1 := F1 (hd_symb s1_p M.u) (Vcons x1 Vnil). Definition u x1 := F1 (int_symb s1_p M.u) (Vcons x1 Vnil). Definition hv x1 := F1 (hd_symb s1_p M.v) (Vcons x1 Vnil). Definition v x1 := F1 (int_symb s1_p M.v) (Vcons x1 Vnil). Definition hw x1 := F1 (hd_symb s1_p M.w) (Vcons x1 Vnil). Definition w x1 := F1 (int_symb s1_p M.w) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hw (S1.a (S1.c (V1 0)))) (S1.hu (S1.b (S1.d (V1 0)))) :: nil) :: ( R1 (S1.hw (S1.a (S1.a (V1 0)))) (S1.hu (S1.w (V1 0))) :: nil) :: ( R1 (S1.hw (S1.a (S1.a (V1 0)))) (S1.hw (V1 0)) :: nil) :: ( R1 (S1.hv (S1.a (S1.c (V1 0)))) (S1.hu (S1.b (S1.d (V1 0)))) :: nil) :: ( R1 (S1.hv (S1.a (S1.a (V1 0)))) (S1.hu (S1.v (V1 0))) :: nil) :: ( R1 (S1.hv (S1.a (S1.a (V1 0)))) (S1.hv (V1 0)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a) => nil | (int_symb M.a) => (2%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.c) => nil | (int_symb M.c) => (3%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.d) => nil | (int_symb M.d) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.u) => nil | (int_symb M.u) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.b) => nil | (int_symb M.b) => (3%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.v) => nil | (int_symb M.v) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.w) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.w) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.a) => nil | (int_symb M.a) => (2%Z, (Vcons 0 Vnil)) :: (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.c) => nil | (int_symb M.c) => (3%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.d) => nil | (int_symb M.d) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.u) => nil | (int_symb M.u) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.b) => nil | (int_symb M.b) => (3%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.v) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.v) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.w) => nil | (int_symb M.w) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. right. PI1.prove_termination. termination_trivial. left. co_scc. left. co_scc. right. PI2.prove_termination. termination_trivial. Qed.