f#( j( x , y ) , y ) | → | g#( f( x , k( y ) ) ) |
f#( j( x , y ) , y ) | → | f#( x , k( y ) ) |
f#( j( x , y ) , y ) | → | k#( y ) |
f#( x , h1( y , z ) ) | → | h2#( 0 , x , h1( y , z ) ) |
g#( h2( x , y , h1( z , u ) ) ) | → | h2#( s( x ) , y , h1( z , u ) ) |
h2#( x , j( y , h1( z , u ) ) , h1( z , u ) ) | → | h2#( s( x ) , y , h1( s( z ) , u ) ) |
The dependency pairs are split into 2 component(s).
f#( j( x , y ) , y ) | → | f#( x , k( y ) ) |
Linear polynomial interpretation over the naturals
[h (x1) ] | = | x1 | |
[j (x1, x2) ] | = | 2 x1 + x2 + 3 | |
[i (x1) ] | = | x1 | |
[k (x1) ] | = | 2 x1 | |
[h2 (x1, x2, x3) ] | = | x1 + x2 + 1 | |
[f (x1, x2) ] | = | 2 x1 + 2 x2 + 2 | |
[h1 (x1, x2) ] | = | 2 x1 | |
[0] | = | 0 | |
[s (x1) ] | = | 0 | |
[f# (x1, x2) ] | = | x1 | |
[g (x1) ] | = | x1 + 2 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.
h2#( x , j( y , h1( z , u ) ) , h1( z , u ) ) | → | h2#( s( x ) , y , h1( s( z ) , u ) ) |
Linear polynomial interpretation over the naturals
[h (x1) ] | = | x1 + 1 | |
[j (x1, x2) ] | = | x1 + 3 x2 + 1 | |
[i (x1) ] | = | x1 | |
[k (x1) ] | = | x1 | |
[h2 (x1, x2, x3) ] | = | x1 | |
[f (x1, x2) ] | = | x1 + x2 + 1 | |
[h1 (x1, x2) ] | = | 3 x1 + x2 + 1 | |
[s (x1) ] | = | x1 | |
[0] | = | 0 | |
[g (x1) ] | = | x1 + 1 | |
[h2# (x1, x2, x3) ] | = | 2 x1 + 3 x2 + 2 x3 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
none |
All dependency pairs have been removed.