Require Import ADPUnif.
Require Import ADecomp.
Require Import ADuplicateSymb.
Require Import AGraph.
Require Import ATrs.
Require Import List.
Require Import LogicUtil.
Require Import SN.
Require Import VecUtil.

Open Scope nat_scope.
(* termination problem *)

Module M.
  Inductive symb : Type :=
  | _plus__1 : symb
  | minus : symb
  | minux : symb.
End M.

Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}.

Proof.
decide equality.
Defined.

Open Scope nat_scope.
Definition ar (s : M.symb) : nat :=
  match s with
  | M._plus__1 => 2
  | M.minus => 1
  | M.minux => 1
  end.

Definition s0 := ASignature.mkSignature ar eq_symb_dec.
Definition s0_p := s0.
Definition V0 := @ATerm.Var s0.
Definition F0 := @ATerm.Fun s0.
Definition R0 := @ATrs.mkRule s0.

Module S0.
  Definition _plus__1 x2 x1 := F0 M._plus__1 (Vcons x2 (Vcons x1 Vnil)).
  Definition minus x1 := F0 M.minus (Vcons x1 Vnil).
  Definition minux x1 := F0 M.minux (Vcons x1 Vnil).
End S0.

Definition E :=
   @nil (@ATrs.rule s0).

Definition R :=
   R0 (S0.minus (S0.minus (V0 0)))
      (V0 0)
:: R0 (S0.minux (S0._plus__1 (V0 0) (V0 1)))
      (S0._plus__1 (S0.minus (V0 1)) (S0.minus (V0 0)))
:: R0 (S0._plus__1 (S0.minus (V0 0)) (S0._plus__1 (V0 0) (V0 2)))
      (V0 2)
:: R0 (S0._plus__1 (S0._plus__1 (V0 0) (V0 1)) (S0.minus (V0 1)))
      (V0 0)
:: @nil (@ATrs.rule s0).

Definition rel := ATrs.red_mod E R.

(* symbol marking *)

Definition s1 := dup_sig s0.
Definition s1_p := s0.
Definition V1 := @ATerm.Var s1.
Definition F1 := @ATerm.Fun s1.
Definition R1 := @ATrs.mkRule s1.

Module S1.
  Definition h_plus__1 x2 x1 := F1 (hd_symb s1_p M._plus__1) (Vcons x2 (Vcons x1 Vnil)).
  Definition _plus__1 x2 x1 := F1 (int_symb s1_p M._plus__1) (Vcons x2 (Vcons x1 Vnil)).
  Definition hminus x1 := F1 (hd_symb s1_p M.minus) (Vcons x1 Vnil).
  Definition minus x1 := F1 (int_symb s1_p M.minus) (Vcons x1 Vnil).
  Definition hminux x1 := F1 (hd_symb s1_p M.minux) (Vcons x1 Vnil).
  Definition minux x1 := F1 (int_symb s1_p M.minux) (Vcons x1 Vnil).
End S1.

(* graph decomposition 1 *)

Definition cs1 : list (list (@ATrs.rule s1)) :=

   (  R1 (S1.hminux (S1._plus__1 (V1 0) (V1 1)))
         (S1.hminus (V1 0))
   :: nil)

:: (  R1 (S1.hminux (S1._plus__1 (V1 0) (V1 1)))
         (S1.hminus (V1 1))
   :: nil)

:: (  R1 (S1.hminux (S1._plus__1 (V1 0) (V1 1)))
         (S1.h_plus__1 (S1.minus (V1 1)) (S1.minus (V1 0)))
   :: nil)

:: nil.

(* termination proof *)

Lemma termination : WF rel.

Proof.
unfold rel.
dp_trans.
mark.
let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R;
graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R.
dpg_unif_N_correct.
left. co_scc.
left. co_scc.
left. co_scc.
Qed.