Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _0_2 : symb | _if_4 : symb | _lt__3 : symb | _minus__1 : symb | gcd : symb | s : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._0_2 => 0 | M._if_4 => 3 | M._lt__3 => 2 | M._minus__1 => 2 | M.gcd => 2 | M.s => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _0_2 := F0 M._0_2 Vnil. Definition _if_4 x3 x2 x1 := F0 M._if_4 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition _lt__3 x2 x1 := F0 M._lt__3 (Vcons x2 (Vcons x1 Vnil)). Definition _minus__1 x2 x1 := F0 M._minus__1 (Vcons x2 (Vcons x1 Vnil)). Definition gcd x2 x1 := F0 M.gcd (Vcons x2 (Vcons x1 Vnil)). Definition s x1 := F0 M.s (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.gcd (V0 0) S0._0_2) (V0 0) :: R0 (S0.gcd S0._0_2 (V0 0)) (V0 0) :: R0 (S0.gcd (S0.s (V0 0)) (S0.s (V0 1))) (S0._if_4 (S0._lt__3 (V0 0) (V0 1)) (S0.gcd (S0.s (V0 0)) (S0._minus__1 (V0 1) (V0 0))) (S0.gcd (S0._minus__1 (V0 0) (V0 1)) (S0.s (V0 1)))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_0_2 := F1 (hd_symb s1_p M._0_2) Vnil. Definition _0_2 := F1 (int_symb s1_p M._0_2) Vnil. Definition h_if_4 x3 x2 x1 := F1 (hd_symb s1_p M._if_4) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition _if_4 x3 x2 x1 := F1 (int_symb s1_p M._if_4) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition h_lt__3 x2 x1 := F1 (hd_symb s1_p M._lt__3) (Vcons x2 (Vcons x1 Vnil)). Definition _lt__3 x2 x1 := F1 (int_symb s1_p M._lt__3) (Vcons x2 (Vcons x1 Vnil)). Definition h_minus__1 x2 x1 := F1 (hd_symb s1_p M._minus__1) (Vcons x2 (Vcons x1 Vnil)). Definition _minus__1 x2 x1 := F1 (int_symb s1_p M._minus__1) (Vcons x2 (Vcons x1 Vnil)). Definition hgcd x2 x1 := F1 (hd_symb s1_p M.gcd) (Vcons x2 (Vcons x1 Vnil)). Definition gcd x2 x1 := F1 (int_symb s1_p M.gcd) (Vcons x2 (Vcons x1 Vnil)). Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hgcd (S1.s (V1 0)) (S1.s (V1 1))) (S1.hgcd (S1._minus__1 (V1 0) (V1 1)) (S1.s (V1 1))) :: nil) :: ( R1 (S1.hgcd (S1.s (V1 0)) (S1.s (V1 1))) (S1.hgcd (S1.s (V1 0)) (S1._minus__1 (V1 1) (V1 0))) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. Qed.