Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | and : symb | false : symb | implies : symb | not : symb | or : symb | true : symb | xor : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.and => 2 | M.false => 0 | M.implies => 2 | M.not => 1 | M.or => 2 | M.true => 0 | M.xor => 2 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition and x2 x1 := F0 M.and (Vcons x2 (Vcons x1 Vnil)). Definition false := F0 M.false Vnil. Definition implies x2 x1 := F0 M.implies (Vcons x2 (Vcons x1 Vnil)). Definition not x1 := F0 M.not (Vcons x1 Vnil). Definition or x2 x1 := F0 M.or (Vcons x2 (Vcons x1 Vnil)). Definition true := F0 M.true Vnil. Definition xor x2 x1 := F0 M.xor (Vcons x2 (Vcons x1 Vnil)). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.not (V0 0)) (S0.xor (V0 0) S0.true) :: R0 (S0.or (V0 0) (V0 1)) (S0.xor (S0.and (V0 0) (V0 1)) (S0.xor (V0 0) (V0 1))) :: R0 (S0.implies (V0 0) (V0 1)) (S0.xor (S0.and (V0 0) (V0 1)) (S0.xor (V0 0) S0.true)) :: R0 (S0.and (V0 0) S0.true) (V0 0) :: R0 (S0.and (V0 0) S0.false) S0.false :: R0 (S0.and (V0 0) (V0 0)) (V0 0) :: R0 (S0.xor (V0 0) S0.false) (V0 0) :: R0 (S0.xor (V0 0) (V0 0)) S0.false :: R0 (S0.and (S0.xor (V0 0) (V0 1)) (V0 2)) (S0.xor (S0.and (V0 0) (V0 2)) (S0.and (V0 1) (V0 2))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition hand x2 x1 := F1 (hd_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition and x2 x1 := F1 (int_symb s1_p M.and) (Vcons x2 (Vcons x1 Vnil)). Definition hfalse := F1 (hd_symb s1_p M.false) Vnil. Definition false := F1 (int_symb s1_p M.false) Vnil. Definition himplies x2 x1 := F1 (hd_symb s1_p M.implies) (Vcons x2 (Vcons x1 Vnil)). Definition implies x2 x1 := F1 (int_symb s1_p M.implies) (Vcons x2 (Vcons x1 Vnil)). Definition hnot x1 := F1 (hd_symb s1_p M.not) (Vcons x1 Vnil). Definition not x1 := F1 (int_symb s1_p M.not) (Vcons x1 Vnil). Definition hor x2 x1 := F1 (hd_symb s1_p M.or) (Vcons x2 (Vcons x1 Vnil)). Definition or x2 x1 := F1 (int_symb s1_p M.or) (Vcons x2 (Vcons x1 Vnil)). Definition htrue := F1 (hd_symb s1_p M.true) Vnil. Definition true := F1 (int_symb s1_p M.true) Vnil. Definition hxor x2 x1 := F1 (hd_symb s1_p M.xor) (Vcons x2 (Vcons x1 Vnil)). Definition xor x2 x1 := F1 (int_symb s1_p M.xor) (Vcons x2 (Vcons x1 Vnil)). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hand (S1.xor (V1 0) (V1 1)) (V1 2)) (S1.hxor (S1.and (V1 0) (V1 2)) (S1.and (V1 1) (V1 2))) :: nil) :: ( R1 (S1.hand (S1.xor (V1 0) (V1 1)) (V1 2)) (S1.hand (V1 1) (V1 2)) :: R1 (S1.hand (S1.xor (V1 0) (V1 1)) (V1 2)) (S1.hand (V1 0) (V1 2)) :: nil) :: ( R1 (S1.himplies (V1 0) (V1 1)) (S1.hxor (V1 0) (S1.true)) :: nil) :: ( R1 (S1.himplies (V1 0) (V1 1)) (S1.hand (V1 0) (V1 1)) :: nil) :: ( R1 (S1.himplies (V1 0) (V1 1)) (S1.hxor (S1.and (V1 0) (V1 1)) (S1.xor (V1 0) (S1.true))) :: nil) :: ( R1 (S1.hor (V1 0) (V1 1)) (S1.hxor (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hor (V1 0) (V1 1)) (S1.hand (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hor (V1 0) (V1 1)) (S1.hxor (S1.and (V1 0) (V1 1)) (S1.xor (V1 0) (V1 1))) :: nil) :: ( R1 (S1.hnot (V1 0)) (S1.hxor (V1 0) (S1.true)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.not) => nil | (int_symb M.not) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.xor) => nil | (int_symb M.xor) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.or) => nil | (int_symb M.or) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.and) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.implies) => nil | (int_symb M.implies) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.false) => nil | (int_symb M.false) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI1.prove_termination. termination_trivial. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. left. co_scc. Qed.