Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _eq__2 : symb | _plus__plus__1 : symb | f : symb | false : symb | g : symb | max : symb | max' : symb | mem : symb | nil : symb | not : symb | null : symb | or : symb | true : symb | u : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._eq__2 => 2 | M._plus__plus__1 => 2 | M.f => 2 | M.false => 0 | M.g => 2 | M.max => 1 | M.max' => 2 | M.mem => 2 | M.nil => 0 | M.not => 1 | M.null => 1 | M.or => 2 | M.true => 0 | M.u => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _eq__2 x2 x1 := F0 M._eq__2 (Vcons x2 (Vcons x1 Vnil)). Definition _plus__plus__1 x2 x1 := F0 M._plus__plus__1 (Vcons x2 (Vcons x1 Vnil)). Definition f x2 x1 := F0 M.f (Vcons x2 (Vcons x1 Vnil)). Definition false := F0 M.false Vnil. Definition g x2 x1 := F0 M.g (Vcons x2 (Vcons x1 Vnil)). Definition max x1 := F0 M.max (Vcons x1 Vnil). Definition max' x2 x1 := F0 M.max' (Vcons x2 (Vcons x1 Vnil)). Definition mem x2 x1 := F0 M.mem (Vcons x2 (Vcons x1 Vnil)). Definition nil := F0 M.nil Vnil. Definition not x1 := F0 M.not (Vcons x1 Vnil). Definition null x1 := F0 M.null (Vcons x1 Vnil). Definition or x2 x1 := F0 M.or (Vcons x2 (Vcons x1 Vnil)). Definition true := F0 M.true Vnil. Definition u := F0 M.u Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.f (V0 0) S0.nil) (S0.g S0.nil (V0 0)) :: R0 (S0.f (V0 0) (S0.g (V0 1) (V0 2))) (S0.g (S0.f (V0 0) (V0 1)) (V0 2)) :: R0 (S0._plus__plus__1 (V0 0) S0.nil) (V0 0) :: R0 (S0._plus__plus__1 (V0 0) (S0.g (V0 1) (V0 2))) (S0.g (S0._plus__plus__1 (V0 0) (V0 1)) (V0 2)) :: R0 (S0.null S0.nil) S0.true :: R0 (S0.null (S0.g (V0 0) (V0 1))) S0.false :: R0 (S0.mem S0.nil (V0 0)) S0.false :: R0 (S0.mem (S0.g (V0 0) (V0 1)) (V0 2)) (S0.or (S0._eq__2 (V0 1) (V0 2)) (S0.mem (V0 0) (V0 2))) :: R0 (S0.mem (V0 0) (S0.max (V0 0))) (S0.not (S0.null (V0 0))) :: R0 (S0.max (S0.g (S0.g S0.nil (V0 0)) (V0 1))) (S0.max' (V0 0) (V0 1)) :: R0 (S0.max (S0.g (S0.g (S0.g (V0 0) (V0 1)) (V0 2)) S0.u)) (S0.max' (S0.max (S0.g (S0.g (V0 0) (V0 1)) (V0 2))) S0.u) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_eq__2 x2 x1 := F1 (hd_symb s1_p M._eq__2) (Vcons x2 (Vcons x1 Vnil)). Definition _eq__2 x2 x1 := F1 (int_symb s1_p M._eq__2) (Vcons x2 (Vcons x1 Vnil)). Definition h_plus__plus__1 x2 x1 := F1 (hd_symb s1_p M._plus__plus__1) (Vcons x2 (Vcons x1 Vnil)). Definition _plus__plus__1 x2 x1 := F1 (int_symb s1_p M._plus__plus__1) (Vcons x2 (Vcons x1 Vnil)). Definition hf x2 x1 := F1 (hd_symb s1_p M.f) (Vcons x2 (Vcons x1 Vnil)). Definition f x2 x1 := F1 (int_symb s1_p M.f) (Vcons x2 (Vcons x1 Vnil)). Definition hfalse := F1 (hd_symb s1_p M.false) Vnil. Definition false := F1 (int_symb s1_p M.false) Vnil. Definition hg x2 x1 := F1 (hd_symb s1_p M.g) (Vcons x2 (Vcons x1 Vnil)). Definition g x2 x1 := F1 (int_symb s1_p M.g) (Vcons x2 (Vcons x1 Vnil)). Definition hmax x1 := F1 (hd_symb s1_p M.max) (Vcons x1 Vnil). Definition max x1 := F1 (int_symb s1_p M.max) (Vcons x1 Vnil). Definition hmax' x2 x1 := F1 (hd_symb s1_p M.max') (Vcons x2 (Vcons x1 Vnil)). Definition max' x2 x1 := F1 (int_symb s1_p M.max') (Vcons x2 (Vcons x1 Vnil)). Definition hmem x2 x1 := F1 (hd_symb s1_p M.mem) (Vcons x2 (Vcons x1 Vnil)). Definition mem x2 x1 := F1 (int_symb s1_p M.mem) (Vcons x2 (Vcons x1 Vnil)). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hnot x1 := F1 (hd_symb s1_p M.not) (Vcons x1 Vnil). Definition not x1 := F1 (int_symb s1_p M.not) (Vcons x1 Vnil). Definition hnull x1 := F1 (hd_symb s1_p M.null) (Vcons x1 Vnil). Definition null x1 := F1 (int_symb s1_p M.null) (Vcons x1 Vnil). Definition hor x2 x1 := F1 (hd_symb s1_p M.or) (Vcons x2 (Vcons x1 Vnil)). Definition or x2 x1 := F1 (int_symb s1_p M.or) (Vcons x2 (Vcons x1 Vnil)). Definition htrue := F1 (hd_symb s1_p M.true) Vnil. Definition true := F1 (int_symb s1_p M.true) Vnil. Definition hu := F1 (hd_symb s1_p M.u) Vnil. Definition u := F1 (int_symb s1_p M.u) Vnil. End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hmax (S1.g (S1.g (S1.g (V1 0) (V1 1)) (V1 2)) (S1.u))) (S1.hmax (S1.g (S1.g (V1 0) (V1 1)) (V1 2))) :: nil) :: ( R1 (S1.hmem (V1 0) (S1.max (V1 0))) (S1.hnull (V1 0)) :: nil) :: ( R1 (S1.hmem (S1.g (V1 0) (V1 1)) (V1 2)) (S1.hmem (V1 0) (V1 2)) :: nil) :: ( R1 (S1.h_plus__plus__1 (V1 0) (S1.g (V1 1) (V1 2))) (S1.h_plus__plus__1 (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hf (V1 0) (S1.g (V1 1) (V1 2))) (S1.hf (V1 0) (V1 1)) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.f) => nil | (int_symb M.f) => (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (3%Z, Vnil) :: nil | (hd_symb M.g) => nil | (int_symb M.g) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M._plus__plus__1) => nil | (int_symb M._plus__plus__1) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.null) => nil | (int_symb M.null) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.false) => nil | (int_symb M.false) => (1%Z, Vnil) :: nil | (hd_symb M.mem) => nil | (int_symb M.mem) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.or) => nil | (int_symb M.or) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M._eq__2) => nil | (int_symb M._eq__2) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: nil | (hd_symb M.max) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.max) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.not) => nil | (int_symb M.not) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.max') => nil | (int_symb M.max') => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: nil | (hd_symb M.u) => nil | (int_symb M.u) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.f) => nil | (int_symb M.f) => (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (3%Z, Vnil) :: nil | (hd_symb M.g) => nil | (int_symb M.g) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M._plus__plus__1) => nil | (int_symb M._plus__plus__1) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.null) => nil | (int_symb M.null) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.false) => nil | (int_symb M.false) => nil | (hd_symb M.mem) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.mem) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.or) => nil | (int_symb M.or) => nil | (hd_symb M._eq__2) => nil | (int_symb M._eq__2) => nil | (hd_symb M.max) => nil | (int_symb M.max) => nil | (hd_symb M.not) => nil | (int_symb M.not) => nil | (hd_symb M.max') => nil | (int_symb M.max') => nil | (hd_symb M.u) => nil | (int_symb M.u) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* polynomial interpretation 3 *) Module PIS3 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.f) => nil | (int_symb M.f) => (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (3%Z, Vnil) :: nil | (hd_symb M.g) => nil | (int_symb M.g) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M._plus__plus__1) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M._plus__plus__1) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.null) => nil | (int_symb M.null) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.false) => nil | (int_symb M.false) => nil | (hd_symb M.mem) => nil | (int_symb M.mem) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.or) => nil | (int_symb M.or) => nil | (hd_symb M._eq__2) => nil | (int_symb M._eq__2) => nil | (hd_symb M.max) => nil | (int_symb M.max) => nil | (hd_symb M.not) => nil | (int_symb M.not) => nil | (hd_symb M.max') => nil | (int_symb M.max') => nil | (hd_symb M.u) => nil | (int_symb M.u) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS3. Module PI3 := PolyInt PIS3. (* polynomial interpretation 4 *) Module PIS4 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.f) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.f) => (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => (3%Z, Vnil) :: nil | (hd_symb M.g) => nil | (int_symb M.g) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M._plus__plus__1) => nil | (int_symb M._plus__plus__1) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.null) => nil | (int_symb M.null) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.false) => nil | (int_symb M.false) => nil | (hd_symb M.mem) => nil | (int_symb M.mem) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.or) => nil | (int_symb M.or) => nil | (hd_symb M._eq__2) => nil | (int_symb M._eq__2) => nil | (hd_symb M.max) => nil | (int_symb M.max) => nil | (hd_symb M.not) => nil | (int_symb M.not) => nil | (hd_symb M.max') => nil | (int_symb M.max') => nil | (hd_symb M.u) => nil | (int_symb M.u) => nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS4. Module PI4 := PolyInt PIS4. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. right. PI1.prove_termination. termination_trivial. left. co_scc. right. PI2.prove_termination. termination_trivial. right. PI3.prove_termination. termination_trivial. right. PI4.prove_termination. termination_trivial. Qed.