Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _dot__1 : symb | _if_2 : symb | a : symb | b : symb | b' : symb | c : symb | d : symb | d' : symb | e : symb | f : symb | g : symb | h : symb | i : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._dot__1 => 2 | M._if_2 => 3 | M.a => 0 | M.b => 0 | M.b' => 0 | M.c => 0 | M.d => 0 | M.d' => 0 | M.e => 0 | M.f => 2 | M.g => 2 | M.h => 2 | M.i => 3 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _dot__1 x2 x1 := F0 M._dot__1 (Vcons x2 (Vcons x1 Vnil)). Definition _if_2 x3 x2 x1 := F0 M._if_2 (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition a := F0 M.a Vnil. Definition b := F0 M.b Vnil. Definition b' := F0 M.b' Vnil. Definition c := F0 M.c Vnil. Definition d := F0 M.d Vnil. Definition d' := F0 M.d' Vnil. Definition e := F0 M.e Vnil. Definition f x2 x1 := F0 M.f (Vcons x2 (Vcons x1 Vnil)). Definition g x2 x1 := F0 M.g (Vcons x2 (Vcons x1 Vnil)). Definition h x2 x1 := F0 M.h (Vcons x2 (Vcons x1 Vnil)). Definition i x3 x2 x1 := F0 M.i (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.f (S0.g (S0.i S0.a S0.b S0.b') S0.c) S0.d) (S0._if_2 S0.e (S0.f (S0._dot__1 S0.b S0.c) S0.d') (S0.f (S0._dot__1 S0.b' S0.c) S0.d')) :: R0 (S0.f (S0.g (S0.h S0.a S0.b) S0.c) S0.d) (S0._if_2 S0.e (S0.f (S0._dot__1 S0.b (S0.g (S0.h S0.a S0.b) S0.c)) S0.d) (S0.f S0.c S0.d')) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_dot__1 x2 x1 := F1 (hd_symb s1_p M._dot__1) (Vcons x2 (Vcons x1 Vnil)). Definition _dot__1 x2 x1 := F1 (int_symb s1_p M._dot__1) (Vcons x2 (Vcons x1 Vnil)). Definition h_if_2 x3 x2 x1 := F1 (hd_symb s1_p M._if_2) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition _if_2 x3 x2 x1 := F1 (int_symb s1_p M._if_2) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition ha := F1 (hd_symb s1_p M.a) Vnil. Definition a := F1 (int_symb s1_p M.a) Vnil. Definition hb := F1 (hd_symb s1_p M.b) Vnil. Definition b := F1 (int_symb s1_p M.b) Vnil. Definition hb' := F1 (hd_symb s1_p M.b') Vnil. Definition b' := F1 (int_symb s1_p M.b') Vnil. Definition hc := F1 (hd_symb s1_p M.c) Vnil. Definition c := F1 (int_symb s1_p M.c) Vnil. Definition hd := F1 (hd_symb s1_p M.d) Vnil. Definition d := F1 (int_symb s1_p M.d) Vnil. Definition hd' := F1 (hd_symb s1_p M.d') Vnil. Definition d' := F1 (int_symb s1_p M.d') Vnil. Definition he := F1 (hd_symb s1_p M.e) Vnil. Definition e := F1 (int_symb s1_p M.e) Vnil. Definition hf x2 x1 := F1 (hd_symb s1_p M.f) (Vcons x2 (Vcons x1 Vnil)). Definition f x2 x1 := F1 (int_symb s1_p M.f) (Vcons x2 (Vcons x1 Vnil)). Definition hg x2 x1 := F1 (hd_symb s1_p M.g) (Vcons x2 (Vcons x1 Vnil)). Definition g x2 x1 := F1 (int_symb s1_p M.g) (Vcons x2 (Vcons x1 Vnil)). Definition hh x2 x1 := F1 (hd_symb s1_p M.h) (Vcons x2 (Vcons x1 Vnil)). Definition h x2 x1 := F1 (int_symb s1_p M.h) (Vcons x2 (Vcons x1 Vnil)). Definition hi x3 x2 x1 := F1 (hd_symb s1_p M.i) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition i x3 x2 x1 := F1 (int_symb s1_p M.i) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hf (S1.g (S1.h (S1.a) (S1.b)) (S1.c)) (S1.d)) (S1.hf (S1.c) (S1.d')) :: nil) :: ( R1 (S1.hf (S1.g (S1.h (S1.a) (S1.b)) (S1.c)) (S1.d)) (S1.hf (S1._dot__1 (S1.b) (S1.g (S1.h (S1.a) (S1.b)) (S1.c))) (S1.d)) :: nil) :: ( R1 (S1.hf (S1.g (S1.i (S1.a) (S1.b) (S1.b')) (S1.c)) (S1.d)) (S1.hf (S1._dot__1 (S1.b') (S1.c)) (S1.d')) :: nil) :: ( R1 (S1.hf (S1.g (S1.i (S1.a) (S1.b) (S1.b')) (S1.c)) (S1.d)) (S1.hf (S1._dot__1 (S1.b) (S1.c)) (S1.d')) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. left. co_scc. left. co_scc. Qed.