| perfectp#( s( x ) ) | → | f#( x , s( 0 ) , s( x ) , s( x ) ) |
| f#( s( x ) , 0 , z , u ) | → | f#( x , u , minus( z , s( x ) ) , u ) |
| f#( s( x ) , s( y ) , z , u ) | → | f#( s( x ) , minus( y , x ) , z , u ) |
| f#( s( x ) , s( y ) , z , u ) | → | f#( x , u , z , u ) |
The dependency pairs are split into 1 component(s).
| f#( s( x ) , s( y ) , z , u ) | → | f#( x , u , z , u ) |
| f#( s( x ) , 0 , z , u ) | → | f#( x , u , minus( z , s( x ) ) , u ) |
Linear polynomial interpretation over the naturals
| [minus (x1, x2) ] | = | x1 + 2 | |
| [true] | = | 0 | |
| [if (x1, x2, x3) ] | = | 2 x1 | |
| [f (x1, ..., x4) ] | = | 3 x1 | |
| [false] | = | 0 | |
| [f# (x1, ..., x4) ] | = | 3 x1 + 3 x2 | |
| [s (x1) ] | = | 3 x1 + 3 | |
| [0] | = | 0 | |
| [perfectp (x1) ] | = | 3 x1 + 3 | |
| [le (x1, x2) ] | = | 2 x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.