a__and#( true , X ) | → | mark#( X ) |
a__if#( true , X , Y ) | → | mark#( X ) |
a__if#( false , X , Y ) | → | mark#( Y ) |
a__add#( 0 , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( if( X1 , X2 , X3 ) ) | → | a__if#( mark( X1 ) , X2 , X3 ) |
mark#( if( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( add( X1 , X2 ) ) | → | a__add#( mark( X1 ) , X2 ) |
mark#( add( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( first( X1 , X2 ) ) | → | a__first#( mark( X1 ) , mark( X2 ) ) |
mark#( first( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( first( X1 , X2 ) ) | → | mark#( X2 ) |
mark#( from( X ) ) | → | a__from#( X ) |
The dependency pairs are split into 1 component(s).
mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
a__and#( true , X ) | → | mark#( X ) |
mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( if( X1 , X2 , X3 ) ) | → | a__if#( mark( X1 ) , X2 , X3 ) |
a__if#( true , X , Y ) | → | mark#( X ) |
mark#( if( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
mark#( add( X1 , X2 ) ) | → | a__add#( mark( X1 ) , X2 ) |
a__add#( 0 , X ) | → | mark#( X ) |
mark#( add( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( first( X1 , X2 ) ) | → | mark#( X1 ) |
mark#( first( X1 , X2 ) ) | → | mark#( X2 ) |
a__if#( false , X , Y ) | → | mark#( Y ) |
Linear polynomial interpretation over the naturals
[from (x1) ] | = | x1 | |
[mark (x1) ] | = | 3 x1 + 2 | |
[if (x1, x2, x3) ] | = | 3 x1 + 2 x2 + 2 x3 + 3 | |
[first (x1, x2) ] | = | x1 + 2 x2 + 2 | |
[a__first (x1, x2) ] | = | x1 + 2 x2 + 2 | |
[a__and# (x1, x2) ] | = | 2 x1 + 3 x2 | |
[mark# (x1) ] | = | 3 x1 + 2 | |
[0] | = | 1 | |
[a__add# (x1, x2) ] | = | 2 x1 + 3 x2 | |
[a__add (x1, x2) ] | = | 3 x1 + 3 x2 + 3 | |
[nil] | = | 0 | |
[cons (x1, x2) ] | = | 3 x1 + 1 | |
[a__and (x1, x2) ] | = | 2 x1 + 3 x2 + 3 | |
[true] | = | 2 | |
[and (x1, x2) ] | = | 2 x1 + 2 x2 + 3 | |
[false] | = | 1 | |
[a__if# (x1, x2, x3) ] | = | 3 x1 + 3 x2 + 3 x3 + 2 | |
[a__if (x1, x2, x3) ] | = | 3 x1 + 3 x2 + 3 x3 + 3 | |
[add (x1, x2) ] | = | 3 x1 + 2 x2 + 3 | |
[a__from (x1) ] | = | 3 x1 + 2 | |
[s (x1) ] | = | 0 | |
[f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
a__add#( 0 , X ) | → | mark#( X ) |
The dependency pairs are split into 0 component(s).